Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscientist develops tool to image brain function at the cellular level

14.07.2004


Carnegie Mellon University neuroscientist Alison Barth has developed the first tool to identify and study individual neurons activated in a living animal. This advance, described in the July 21 issue of The Journal of Neuroscience, ultimately could lead to the development of targeted drugs that directly affect specific neurons involved in neurological diseases that alter behavior, learning and perception.

While neuroscientists have made great strides in identifying the general areas of the brain that perform certain tasks, these methods have worked at the gross level and with poor resolution, according to Barth, an assistant professor of biological sciences at the university’s Mellon College of Science. To overcome these limitations, Barth created a transgenic mouse that couples the green fluorescent protein (GFP) with the gene c-fos, which turns on when nerve cells are activated. Using this method, researchers can see specific neurons glow as they are activated by external stimuli such as sensory experience or drug treatment.

"Our transgenic mouse is a novel tool that can be used to visualize, in living brain tissue, a single neuron that has been activated in response to an animal’s experience," Barth said.



Barth used the fosGFP mice to identify neurons that are activated during a specific rearing condition – experiencing the world through one whisker. By locating a cluster of glowing neurons, she was able to precisely identify the area of the brain involved in processing sensory input from the single whisker. Once the neurons of interest had been located, Barth then examined each neuron to determine how its electrophysiological and synaptic properties changed in response to sensory input. Her results are the first to show alterations in the rate at which neurons transmit electrical signals after increased sensory input in vivo.

Barth’s technology is based on the decades-long understanding that a neuron must turn on new genes to firmly encode memories in the brain. Each time c-fos is activated in Barth’s transgenic mouse, so is GFP. The result is an animal whose neurons literally glow when they are activated by stimuli.

"The fosGFP mice offer better access than ever before to the specific neurons that have been activated by an animal’s experience," Barth said.

Although scientists can detect c-fos expression using another technique, it requires disrupting membranes and disturbing connections between nerve cells. Barth’s method circumvents these drawbacks, allowing scientists to study living neurons at the cellular level.

Using the fosGFP mouse to identify a discrete area of the brain involved in inputting sensory information from a single whisker, Barth found that the electrical properties of neurons in the area stimulated by sensation were different than those of neurons deprived of sensation. Specifically, she discovered that neurons in the sensory-stimulated area underwent changes that made them less likely to send a signal to surrounding neurons.

"These changes are hypothesized to be part of a dynamic interplay between forces that maintain neural firing within an optimal range and those that strengthen particular connections between cells, thought to underlie learning," Barth said.

The fosGFP mouse is a broadly applicable tool for many neuroscientists, according to Barth, who has patented the mouse and licensed it commercially.

The fosGFP mouse should help scientists see which neurons are active in different neurological diseases and has broad implications for rational drug design in the treatment of schizophrenia as well as many other psychiatric diseases, according to Barth. For instance, the drug Clozapine, which is used to treat schizophrenia, is effective at relieving symptoms associated with the disease, but it isn’t clear which part of the brain or which specific neurotransmitter receptors are being affected by the drug. Using the fosGFP mouse to study Clozapine’s mechanism of action may provide a better understanding not only of which neurons are activated by the drug, but also how they change on continued exposure to the drug.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>