Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antimalarial substances found in New Caledonian sponges

14.07.2004


Living organisms are an enormous reservoir of natural compounds potentially active against viruses, bacteria or cancerous cells, that could lead to the development of new medicines. Out of about 145 000 natural substances described today, 10% come from marine organisms. Among the few such organisms studied for their chemical composition, sponges of the genus Phloeodictyon (Haploscleridae) collected in shallow New Caledonian waters during campaigns of the programme “Marine Substances of Biological Interest” (SMIB), have proved to contain particular organic compounds, the phloeodictines, alkaloids with powerful antibacterial properties. Up to now, only deep-water species of Phloeodictyon were thought to synthesize these alkaloids, present in all the samples of such bathyal forms taken from an array of seamounts off the southern sector of New Caledonia.

However, phloeodictines have recently been found in shallow-water Oceanapia (a taxonomic synonym of Phloeodictyon) species living on the reef off the east coast of New Caledonia, by a joint scientific team involving the IRD, the University of Trente (Italy), the CNRS and the industrial group Pierre Fabre. This discovery suggests a possible adaptation of bathyal species to the shallow-water reef environment.

The emergence of drug-resistant forms of the malarial agent Plasmodium falciparum has made essential a search for new compounds to control it. Scientists specialized in natural substances, investigating the chemical structure and properties of the phloeodictines as part of the French malaria control research programme Pal +, have revealed antimalarial activity among phloeodictines extracted from the reef sponge Oceanapia fistulosa.



The phloeodictines are a family of alkaloids, composed of three large groups distinguished according to differences in their chemical skeleton. They all carry a lateral poly-N chain and a variable-length carbon chain. Phloeodictines types B and C, which are minority compounds, carry an additional sulfurated poly-N chain. Smaller structural variations can occur in each of these three groups, in the lateral chains of variable length and degree of unsaturation, This makes for a highly complex chemical family. A combination of chromatographic and spectrometric methods obtained the characterization of 25 different compounds that belong to these three groups, extracted from Oceanapia fistulosa. Seventeen of them are new variants.

Laboratory tests involving presentation of a chloroquine-resistant strain of Plasmodium falciparum with these different components demonstrated low-dose inhibition of parasite development by type A phloeodictines, most of which were new.

A particularly promising feature of these phloeodictines’ antimalarial action is that, in vitro, it is accompanied by very low cytotoxicity. These components therefore hold potential as material for the elaboration of antimalarial medicines with new types of structure. Other investigations are planned to seek confirmation of these results and find out accurate information on this antimalarial activity in vivo, using infected rodent models, and to attempt to unravel phloeodictines’ action mechanism.

Marie Guillaume | alfa
Further information:
http://www.ird.fr

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>