Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study in moths shows insects not entirely ruled by instinct

13.07.2004


By examining the brain activity of moths, researchers have found that the behavior of these insects isn’t ruled entirely by instinct. Rather, they can learn which odors mean food.




The findings are more than academic: The researchers hope to develop methods for using trained moths to detect odors of interest for defense industry and law enforcement – such as odors given off by biological and chemical weapons.

Animal behaviorists have historically argued that most insects have a programmed response to a variety of situations, such as knowing which odors signal the presence of food and mates. But scientists are discovering that animals don’t always instinctively know what to do. In these cases, they have to learn, said Kevin Daly, the study’s lead author and a research scientist in entomology at Ohio State University.


He and his colleagues used tiny electrodes implanted in the heads of sphinx moths to continuously monitor the insect’s neuronal activity and feeding behavior before, during and after training the animal that one odor meant food – sugar water – was on the way and another odor did not.

"We saw a dramatic restructuring of the neural networks that convert scent into a code that the rest of the brain can understand," Daly said. "The changes in this coding suggest that the moths learned to differentiate between an odor that meant food and an odor that didn’t."

Understanding how moths detect and discriminate between scents could have wide-reaching applications. In related work, Daly and his colleagues are training moths and bees to detect odors from manufactured explosives.

"In principle, if we can understand how insects learn and distinguish between odors, we could ’train’ these animals to recognize any detectable odor of interest," he said.

The findings currently appear online in the Proceedings of the National Academy of Sciences.

The electrodes placed in the moths’ brains registered the activity of neurons. Electrodes were also placed on feeding muscles to monitor the activity of the proboscis – a long tube that a moth uses for feeding – when the insects were exposed to different odors and to sugar. The researchers wanted to see how a moth’s nervous system changed its response to an odor that was associated with food and how the moth responded behaviorally to that odor.

The moths were restrained in plastic tubes, leaving the antennae and proboscis accessible. Electrodes were inserted into each insect’s head; Daly said that brain recordings could be made for up to 48 hours in these conditions. These moths normally live for a few days as adults.

The investigators put the bound moths through different odor conditioning trials: one created a clear relationship between an odor and food. In this case, the researchers wanted to see what happened in the brain and proboscis before, during and after the moths were exposed to the food-associated odor. In the second trial, moths were exposed to two odors, but only one predicted food. Both trials exposed moths to a series of 20 millisecond-long puffs of odor.

When odor predicted food, the researchers saw a significant and progressive increase – by about 60 percent – in the number of neurons responding to the odor. This increase in the neural network response indicated that the moths learned to associate the odor with food.

The researchers also saw striking differences in neuronal activity between the odor that predicted food and the odor that had nothing to do with food.

"More neurons were recruited into action when a moth smelled the odor connected to food," Daly said. "After a few exposures to this odor, moths automatically started sucking for the food, even when they weren’t rewarded with food. They also learned to not respond to the odor that was unrelated to food. "After learning, the way their nervous system responded to odor changed," he said.

Now that he and his colleagues have documented these nervous system changes, their next step is to take a deeper look into the neural networks and figure out what causes them to respond to changes.

"This study is a first pass at trying to understand how sensory neural networks code information, and how that coding process changes as an animal gains experience," Daly said. "Ultimately, if we really want to understand how an animal changes its behavior, we have to go into the brain," he continued.

Daly conducted the research with Brian Smith, a professor of entomology at Ohio State, and in collaboration with Thomas Christensen, Hong Lei and John Hildebrand, all with the University of Arizona in Tucson.

The National Institutes of Health and the Defense Advanced Research Projects Agency funded this study.

Kevin Daly | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>