Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study in moths shows insects not entirely ruled by instinct

13.07.2004


By examining the brain activity of moths, researchers have found that the behavior of these insects isn’t ruled entirely by instinct. Rather, they can learn which odors mean food.




The findings are more than academic: The researchers hope to develop methods for using trained moths to detect odors of interest for defense industry and law enforcement – such as odors given off by biological and chemical weapons.

Animal behaviorists have historically argued that most insects have a programmed response to a variety of situations, such as knowing which odors signal the presence of food and mates. But scientists are discovering that animals don’t always instinctively know what to do. In these cases, they have to learn, said Kevin Daly, the study’s lead author and a research scientist in entomology at Ohio State University.


He and his colleagues used tiny electrodes implanted in the heads of sphinx moths to continuously monitor the insect’s neuronal activity and feeding behavior before, during and after training the animal that one odor meant food – sugar water – was on the way and another odor did not.

"We saw a dramatic restructuring of the neural networks that convert scent into a code that the rest of the brain can understand," Daly said. "The changes in this coding suggest that the moths learned to differentiate between an odor that meant food and an odor that didn’t."

Understanding how moths detect and discriminate between scents could have wide-reaching applications. In related work, Daly and his colleagues are training moths and bees to detect odors from manufactured explosives.

"In principle, if we can understand how insects learn and distinguish between odors, we could ’train’ these animals to recognize any detectable odor of interest," he said.

The findings currently appear online in the Proceedings of the National Academy of Sciences.

The electrodes placed in the moths’ brains registered the activity of neurons. Electrodes were also placed on feeding muscles to monitor the activity of the proboscis – a long tube that a moth uses for feeding – when the insects were exposed to different odors and to sugar. The researchers wanted to see how a moth’s nervous system changed its response to an odor that was associated with food and how the moth responded behaviorally to that odor.

The moths were restrained in plastic tubes, leaving the antennae and proboscis accessible. Electrodes were inserted into each insect’s head; Daly said that brain recordings could be made for up to 48 hours in these conditions. These moths normally live for a few days as adults.

The investigators put the bound moths through different odor conditioning trials: one created a clear relationship between an odor and food. In this case, the researchers wanted to see what happened in the brain and proboscis before, during and after the moths were exposed to the food-associated odor. In the second trial, moths were exposed to two odors, but only one predicted food. Both trials exposed moths to a series of 20 millisecond-long puffs of odor.

When odor predicted food, the researchers saw a significant and progressive increase – by about 60 percent – in the number of neurons responding to the odor. This increase in the neural network response indicated that the moths learned to associate the odor with food.

The researchers also saw striking differences in neuronal activity between the odor that predicted food and the odor that had nothing to do with food.

"More neurons were recruited into action when a moth smelled the odor connected to food," Daly said. "After a few exposures to this odor, moths automatically started sucking for the food, even when they weren’t rewarded with food. They also learned to not respond to the odor that was unrelated to food. "After learning, the way their nervous system responded to odor changed," he said.

Now that he and his colleagues have documented these nervous system changes, their next step is to take a deeper look into the neural networks and figure out what causes them to respond to changes.

"This study is a first pass at trying to understand how sensory neural networks code information, and how that coding process changes as an animal gains experience," Daly said. "Ultimately, if we really want to understand how an animal changes its behavior, we have to go into the brain," he continued.

Daly conducted the research with Brian Smith, a professor of entomology at Ohio State, and in collaboration with Thomas Christensen, Hong Lei and John Hildebrand, all with the University of Arizona in Tucson.

The National Institutes of Health and the Defense Advanced Research Projects Agency funded this study.

Kevin Daly | EurekAlert!
Further information:
http://www.osu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>