Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Report Outlines Steps Needed to Lessen Smallpox Threat

13.07.2004


The image shows a section through many variola major viruses, the agents that cause smallpox. The protein coat is labeled in yellow and genetic material is shown in red.


The best approach for averting the deadly spread of smallpox following release of the virus by terrorists may rest with the establishment of a major collaborative research effort to develop new antiviral drugs that would involve the pharmaceutical and biotechnology industries, universities and government agencies, according to a new report from the National Academies.

The report delivers the recommendations of a distinguished panel of researchers who participated in a two-day workshop at the National Academies to promote the application of the latest biological information, technology and experience to the study of smallpox. Howard Hughes Medical Institute investigator Stephen C. Harrison of Harvard Medical School is the lead author of the report, which was published online July 12, 2004, in the early edition of the Proceedings of the National Academy of Sciences.

According to Harrison, two factors loomed large as the scientists considered the dangers of smallpox. First, there is essentially no information about whether stocks of the variola virus, which causes smallpox, exist outside the two known repositories in the United States and Russia. Second, the impact of intentional release of the virus would “probably provoke a global health crisis.” The report states that “the lethality of the disease (up to 40 percent) and its ease of transmissibility place variola virus at the top of the [Centers for Disease Control and Prevention’s] list of high threat (category A) agents.”



Given the pressing need for novel drugs to prevent the spread of smallpox if it were to be used as a bioterror agent, Harrison said that the group’s top recommendation was the immediate engagement of biotechnology and pharmaceutical companies in the project. With the estimated price tag for developing two or three antiviral drugs at $1.5-$2.5 billion, it is likely that the government is going to have to consider new ways of operating with these companies. According to Harrison, one idea that was discussed was whether the government could provide contractual funding for development of the antiviral drugs and guarantee a market for them.

“The Department of Defense has a lot of experience with commissioning such products and acting as the sole market for them,” said Harrison. “But the federal health agencies do not, so we recognized that such arrangements would require significant changes in how they interact with industry.”

The report emphasized that there is a basic lack of knowledge about the smallpox virus’s machinery and why it is pathogenic to humans. However, that same machinery promises a multitude of targets for antiviral drugs, wrote the authors.

“Overall, it was clear to everyone that the intricate, highly specialized process of variola replication provides a wealth of scientific opportunities for the development of new drugs that should be able to stop viral infection without damaging normal human tissues,” wrote National Academy of Sciences President Bruce Alberts and Institute of Medicine President Harvey Fineberg in an editorial, also posted in the early online edition of PNAS. Alberts and Fineberg are co-authors of the report, as are HHMI investigators Michael O’Donnell at The Rockefeller University and Peter Walter at the University of California, San Francisco.

According to the report, antiviral drugs against smallpox are needed because vaccines produce substantial side effects. Furthermore, the development of antiviral drugs against smallpox could deter rogue states or terrorists from releasing the virus because its impact would be diminished.

“We are certain that such antiviral drugs are feasible, because there has been a clear proof of principle with drugs against HIV and herpes,” said Harrison. “They demonstrate that relatively conventional kinds of drugs that target key viral enzymes can be important antiviral therapeutics.”

According to Harrison, three main scientific themes emerged during the workshop. “The first is that there are clearly numerous viral enzymes already well characterized that would — by analogy with what has succeeded with other viruses like HIV and herpes simplex — be very plausible targets for conventional current state-of-the-art drug development.

“Level two of the scientific issues was that there are many quite striking and unusual virus-cell interactions associated with a poxvirus infection. A poxvirus is a DNA virus, yet it replicates not in the nucleus where all of our DNA-replicating enzymes lie, but in the cytoplasm. Poxvirus brings along all its own replication machinery. So, these viruses would enable some really exciting cell biology to be done.

“And the third area pertains to why humans die of smallpox. Our experience with HIV has told us that why you become dangerously ill from a viral disease may be as related to your response as to what the virus is doing to the cells it’s infecting. Unfortunately with smallpox, because the virus was eradicated before modern immunology and modern human physiology knew how to address these questions, we don’t know how the virus kills.

“We also do not know how to treat smallpox infection without using antiviral drugs,” said Harrison. “Thus, we believe research using animal models is essential to teach us about treating poxvirus infections.”

One of the long-term goals of an antiviral drug development program should be to attract academic researchers to the study of poxviruses. “Poxvirology is a relatively modest field at the moment,” said Harrison. “It is not a field that has attracted many energetic young investigators recently, and for obvious reasons. But, in fact, we realized that poxviruses could be used as interesting tools to answer questions, not only about the viruses themselves, but fundamental questions about how cells function.

“We felt that there is enough intellectual richness in the field — both at the level of cell biology and at the level of virus-host interactions — that there’s good reason to offer support and encouragement to get the best young scientists excited about the field,” said Harrison.

The report also emphasized the need for government laboratories to support databanks and libraries of compounds from which to identify drug candidates. “We felt it particularly important to emphasize that the Centers for Disease Control and Prevention should ensure that its poxvirus program doesn’t wither on the vine,” said Harrison. The CDC is one of the sites that maintains a stock of smallpox virus. “Without a serious poxvirus research program of high quality in the CDC, it would not be possible to provide adequate infrastructure resources for any of the research efforts that are necessary to develop smallpox antivirals,” he said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Reptile vocalization is surprisingly flexible
30.05.2017 | Max-Planck-Institut für Ornithologie

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>