Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chipmunks Descended From Ancestors That Survived Lastice Age


Eastern chipmunks (Tamias striatus) have upset the apple cart of assumptions on glacier-driven population migrations. Based on a mitochondrial DNA analysis of 244 chipmunks, it seems the majority of them living in Illinois and Wisconsin today descend from ancestors who survived the last North American ice age in what researchers believe were isolated pockets of forestland amid the cold tundra.

The findings - reported online this week ahead of regular publication by the Proceedings of the National Academy of Sciences - came as a surprise to researchers at the University of Illinois at Urbana-Champaign and the Illinois Natural History Survey.

They found that 78 of the 95 haplotypes (groups of individuals with similar sequences of base pairs of genetic material) identified in mostly the Wisconsin and Illinois populations clearly descend from survivors in the west and north, closer to the Wisconsin glaciation. Over time, these chipmunks migrated south from the colder region, merging with chipmunks that migrated into the region from the warmer east and south.

"This is counter-intuitive given that organisms would be expected to respond to glacial expansion by shifting their ranges to more suitable climates most often in a southern refuge followed by a northward recolonization as the glaciers receded," said Kevin C. Rowe, lead author and doctoral student in the evolutionary/molecular biology laboratory at the U. of I.

"It also is particularly surprising that while chipmunks in Illinois and Wisconsin are closely related, they are distantly related to chipmunks in Indiana and Michigan," he said. "There really is no clear geographical barrier at present that should lead to their isolation, so chipmunk history may be responsible. From our data, this history appears to include colonization of the Midwest from multiple sources such as separate ice-age refugia."

Unlike nuclear DNA that passes along vital genetic information, mitochondrial DNA is found in organelles and generates energy. It has been used to trace genetic lineage. In this case, researchers focused on a mitochondrial region called the D-loop, a highly variable one that opens a window on geographical time and distribution of organisms.

DNA was taken from tissue from the very tip of an ear of each chipmunk after the animals were captured in live traps. The chipmunks were released at the same sites of their capture. The DNA, from which 964 unambiguous base pairs were identified, was then analyzed for evolutionary relationships, with 95 unique haplotypes being identified.

Only 17 of the haplotypes were identified as from eastern clades, or groups descending from multiple eastern and southern populations, that included northern Michigan through Indiana and eastern and southern Illinois. The other 78 haplotypes, whose genetic sequences showed little divergence, were found primarily in chipmunks from northern Wisconsin to southern Illinois.

The data, the researchers write, "indicate that T. striatus from Wisconsin and Illinois are descended from a population that has recently expanded out of a small glacial refugium."

That refugium refers to northern regions up against the ice sheets "in an area known as the ’driftless region,’ from where the chipmunks that currently inhabit Wisconsin and Illinois emerged from surviving deciduous forest areas and moved south as the glaciers receded," Rowe said.

The Wisconsin glaciation occurred about 18,000 years ago during the Late Pleistocene, with the Laurentide Ice Sheet gradually receding from its southern reaches. Researchers had long thought that the driftless region near the ice sheets were all tundra, but emerging geological evidence now suggests that small areas of deciduous forests may have persisted, allowing for some animals to survive.

"Overall, in light of global climate change occurring today, our results indicate that predictions of movements and where organisms may or may not end up will not be as straightforward as the literature up to now has led one to believe," said co-author Ken N. Paige, head of the animal biology department at the U. of I.

Other co-authors were Edward J. Heske of the Center for Wildlife Ecology unit of the Illinois Natural History Survey and Patrick W. Brown, formerly at the Natural History Survey and now of Michigan State University Extension. The American Museum of Natural History, American Society of Mammalogists and National Science Foundation funded the project.

| The University of Illinois
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>