Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Team Develops Mutated Yeast Strains To Aid Geneticists

09.07.2004


University of Toronto microbiologists have used pattern recognition software to discover the function of yeast genes essential to cell life - knowledge that could help scientists determine what causes cells to die, as well as what they need to live.

"Given the similarities between the yeast and human genomes, our work should promote advances in genomics research in both yeast and humans," said Professor Timothy Hughes of U of T’s Department of Medical Genetics and Microbiology, who led the research team.

A paper published in the July 9 issue of the journal Cell describes how the researchers engineered mutations to 700 of the 1,000 yeast genes that are essential to cell life. They analyzed the mutant strains by making several basic measurements -- cell size, cell shape and gene levels - and by evaluating a cell’s potential to grow in a variety of media. They then took these data and did computerized analysis of entire categories of genes in order to predict the functions of individual genes, applying a standard technique for pattern discovery used in fields ranging from marketing to face recognition.



"It’s similar to ordering a book from Amazon.com," said Hughes. "After you’ve placed an order, they use the information they’ve gathered to predict your likes and dislikes. The next time you log onto the computer, they extrapolate and suggest other books you might enjoy. They also could use the data to predict other things - for example, your age and your gender - which might, on the surface, seem unrelated to books."

"We’re hoping our use of this technique to predict the function of yeast genes is going to become a classical example of how to do this in biology."

To create each mutated strain, the researchers used a technique in which adding the drug doxycycline to the yeast cells disables an individual gene. This technique is a reliable alternative to the more common method of causing mutations by radiation, because the mutations are engineered rather than random.

The 700 yeast strains developed by Hughes’ team are now available commercially to other researchers and 300 more strains are under development. Yeast is a staple of genomic research because many human genes are similar to yeast genes.

This research was funded by the Canadian Institutes of Health Research and Genome Canada.

Contact:

Timothy Hughes Elaine Smith
Department of Medical Genetics & Microbiology U of T Public Affairs

416-946-8260
t.hughes@utoronto.ca

416-978-5949
elaine.smith@utoronto.ca

Timothy Hughes | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>