Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additional Mechanism Regulates Protein Activity

08.07.2004


A University of Arkansas researcher and his colleagues have discovered a new mechanism that regulates the interaction of proteins in cell membranes. This discovery may lead to more efficient drug screening and possibly different methods for fighting infections.

Roger Koeppe, University Professor of chemistry and biochemistry, Thomas Suchnya, Frederick Sachs and Phillip Gottlieb of SUNY Buffalo and Sonya Tape and Olaf Andersen of Weil Medical College of Cornell University report their findings in the July 8, 2004, issue of Nature.

Scientists have explained the interaction of antibiotics using a “lock and key,” model, where a small drug of a certain shape (the key) binds to a bacterial protein (the lock) to neutralize it and prevent the spread of an infection.



In the Nature paper, the researchers show that this model is not the only rule in drug-protein interaction. They discovered that the mirror image of a peptide isolated from tarantula venom had the same effect on a certain type of pressure-sensitive cell membrane protein channel as did the natural peptide toxin – a finding that violates the “lock and key” model because the toxin and its mirror image have different shapes.

Further, they found that the mirror images of bacterial gramicidin channels, developed in the Koeppe laboratory at the University of Arkansas, respond much like natural gramicidin channels to both the tarantula toxin and its mirror image

“The effect is similar in different chemical systems,” Koeppe said. The researchers have concluded that, instead of working by the traditional “lock and key” model, the peptide toxin and its mirror image change the shape or curvature of the lipid bilayer, or the protective “skin” of the cell membrane.

This finding opens up a host of new applications, including the possibility of using mirror image proteins for drug therapies. Often, the mirror image peptides or proteins are biologically more stable and, if developed into drugs, could last longer in the body, Koeppe said. Also, the mirror image proteins don’t activate the body’s immune system as effectively, which could have a positive impact on organ transplant acceptance.

The gramicidin channel system also could be used to screen the generalized effects of potential drugs on the mechanical properties of lipid bilayer membranes.

“When a company develops a drug, they usually only want it to affect one thing,” Koeppe said. If a drug alters cell membrane properties globally, then its effects may prove too general, he said.

“If new drugs could be tested on gramicidin channels, it could speed up predictions of what such drugs would do in other systems,” Koeppe said. The cell membrane effects may be desirable or undesirable depending upon the system. “This could help companies find out early if there is a problem instead of investing three years and then finding out.”

| newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>