Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additional Mechanism Regulates Protein Activity

08.07.2004


A University of Arkansas researcher and his colleagues have discovered a new mechanism that regulates the interaction of proteins in cell membranes. This discovery may lead to more efficient drug screening and possibly different methods for fighting infections.

Roger Koeppe, University Professor of chemistry and biochemistry, Thomas Suchnya, Frederick Sachs and Phillip Gottlieb of SUNY Buffalo and Sonya Tape and Olaf Andersen of Weil Medical College of Cornell University report their findings in the July 8, 2004, issue of Nature.

Scientists have explained the interaction of antibiotics using a “lock and key,” model, where a small drug of a certain shape (the key) binds to a bacterial protein (the lock) to neutralize it and prevent the spread of an infection.



In the Nature paper, the researchers show that this model is not the only rule in drug-protein interaction. They discovered that the mirror image of a peptide isolated from tarantula venom had the same effect on a certain type of pressure-sensitive cell membrane protein channel as did the natural peptide toxin – a finding that violates the “lock and key” model because the toxin and its mirror image have different shapes.

Further, they found that the mirror images of bacterial gramicidin channels, developed in the Koeppe laboratory at the University of Arkansas, respond much like natural gramicidin channels to both the tarantula toxin and its mirror image

“The effect is similar in different chemical systems,” Koeppe said. The researchers have concluded that, instead of working by the traditional “lock and key” model, the peptide toxin and its mirror image change the shape or curvature of the lipid bilayer, or the protective “skin” of the cell membrane.

This finding opens up a host of new applications, including the possibility of using mirror image proteins for drug therapies. Often, the mirror image peptides or proteins are biologically more stable and, if developed into drugs, could last longer in the body, Koeppe said. Also, the mirror image proteins don’t activate the body’s immune system as effectively, which could have a positive impact on organ transplant acceptance.

The gramicidin channel system also could be used to screen the generalized effects of potential drugs on the mechanical properties of lipid bilayer membranes.

“When a company develops a drug, they usually only want it to affect one thing,” Koeppe said. If a drug alters cell membrane properties globally, then its effects may prove too general, he said.

“If new drugs could be tested on gramicidin channels, it could speed up predictions of what such drugs would do in other systems,” Koeppe said. The cell membrane effects may be desirable or undesirable depending upon the system. “This could help companies find out early if there is a problem instead of investing three years and then finding out.”

| newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>