Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additional Mechanism Regulates Protein Activity

08.07.2004


A University of Arkansas researcher and his colleagues have discovered a new mechanism that regulates the interaction of proteins in cell membranes. This discovery may lead to more efficient drug screening and possibly different methods for fighting infections.

Roger Koeppe, University Professor of chemistry and biochemistry, Thomas Suchnya, Frederick Sachs and Phillip Gottlieb of SUNY Buffalo and Sonya Tape and Olaf Andersen of Weil Medical College of Cornell University report their findings in the July 8, 2004, issue of Nature.

Scientists have explained the interaction of antibiotics using a “lock and key,” model, where a small drug of a certain shape (the key) binds to a bacterial protein (the lock) to neutralize it and prevent the spread of an infection.



In the Nature paper, the researchers show that this model is not the only rule in drug-protein interaction. They discovered that the mirror image of a peptide isolated from tarantula venom had the same effect on a certain type of pressure-sensitive cell membrane protein channel as did the natural peptide toxin – a finding that violates the “lock and key” model because the toxin and its mirror image have different shapes.

Further, they found that the mirror images of bacterial gramicidin channels, developed in the Koeppe laboratory at the University of Arkansas, respond much like natural gramicidin channels to both the tarantula toxin and its mirror image

“The effect is similar in different chemical systems,” Koeppe said. The researchers have concluded that, instead of working by the traditional “lock and key” model, the peptide toxin and its mirror image change the shape or curvature of the lipid bilayer, or the protective “skin” of the cell membrane.

This finding opens up a host of new applications, including the possibility of using mirror image proteins for drug therapies. Often, the mirror image peptides or proteins are biologically more stable and, if developed into drugs, could last longer in the body, Koeppe said. Also, the mirror image proteins don’t activate the body’s immune system as effectively, which could have a positive impact on organ transplant acceptance.

The gramicidin channel system also could be used to screen the generalized effects of potential drugs on the mechanical properties of lipid bilayer membranes.

“When a company develops a drug, they usually only want it to affect one thing,” Koeppe said. If a drug alters cell membrane properties globally, then its effects may prove too general, he said.

“If new drugs could be tested on gramicidin channels, it could speed up predictions of what such drugs would do in other systems,” Koeppe said. The cell membrane effects may be desirable or undesirable depending upon the system. “This could help companies find out early if there is a problem instead of investing three years and then finding out.”

| newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>