Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Additional Mechanism Regulates Protein Activity

08.07.2004


A University of Arkansas researcher and his colleagues have discovered a new mechanism that regulates the interaction of proteins in cell membranes. This discovery may lead to more efficient drug screening and possibly different methods for fighting infections.

Roger Koeppe, University Professor of chemistry and biochemistry, Thomas Suchnya, Frederick Sachs and Phillip Gottlieb of SUNY Buffalo and Sonya Tape and Olaf Andersen of Weil Medical College of Cornell University report their findings in the July 8, 2004, issue of Nature.

Scientists have explained the interaction of antibiotics using a “lock and key,” model, where a small drug of a certain shape (the key) binds to a bacterial protein (the lock) to neutralize it and prevent the spread of an infection.



In the Nature paper, the researchers show that this model is not the only rule in drug-protein interaction. They discovered that the mirror image of a peptide isolated from tarantula venom had the same effect on a certain type of pressure-sensitive cell membrane protein channel as did the natural peptide toxin – a finding that violates the “lock and key” model because the toxin and its mirror image have different shapes.

Further, they found that the mirror images of bacterial gramicidin channels, developed in the Koeppe laboratory at the University of Arkansas, respond much like natural gramicidin channels to both the tarantula toxin and its mirror image

“The effect is similar in different chemical systems,” Koeppe said. The researchers have concluded that, instead of working by the traditional “lock and key” model, the peptide toxin and its mirror image change the shape or curvature of the lipid bilayer, or the protective “skin” of the cell membrane.

This finding opens up a host of new applications, including the possibility of using mirror image proteins for drug therapies. Often, the mirror image peptides or proteins are biologically more stable and, if developed into drugs, could last longer in the body, Koeppe said. Also, the mirror image proteins don’t activate the body’s immune system as effectively, which could have a positive impact on organ transplant acceptance.

The gramicidin channel system also could be used to screen the generalized effects of potential drugs on the mechanical properties of lipid bilayer membranes.

“When a company develops a drug, they usually only want it to affect one thing,” Koeppe said. If a drug alters cell membrane properties globally, then its effects may prove too general, he said.

“If new drugs could be tested on gramicidin channels, it could speed up predictions of what such drugs would do in other systems,” Koeppe said. The cell membrane effects may be desirable or undesirable depending upon the system. “This could help companies find out early if there is a problem instead of investing three years and then finding out.”

| newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>