Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Cancer Agent Built From Anti-Inflammation Drug

08.07.2004


Researchers have used a recently developed anti-inflammatory drug as a starting point to construct a possible new, targeted anti-cancer agent. The new agent works by triggering cancer cells to self-destruct.

The agent is now undergoing laboratory testing by the National Cancer Institute’s (NCI) Rapid Access to Intervention Development (RAID) program.

The potential new drug was developed by researchers at The Ohio State University College of Pharmacy and the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Presently, the agent is known as OSU-03012. The study is published in the June 15 issue of the journal Cancer Research.



“This new agent works by inhibiting a fundamental signaling point in cancer cells, making it potentially effective in a wide range of cancer types,” says study leader Ching-Shih Chen, professor of pharmacy and a researcher with OSU’s Comprehensive Cancer Center.

“We also have evidence that it may sensitize leukemia, and breast and lung cancers to conventional chemotherapy.”

The new agent is based on the drug celecoxib, a nonsteroidal anti-inflammatory drug, or NSAID. Like many NSAIDs, celecoxib also reduces the risk of colorectal cancer when taken regularly.

Scientists knew from the start that celecoxib helps control inflammation by inhibiting an enzyme known as cyclooxygenase-2 (COX-2). But they couldn’t explain the drug’s modest anti-cancer activity.

Past work led by Chen provided the answer.

“We found that celecoxib’s ability to cause cell death and to control inflammation were two different pharmacological properties, and that the two properties could be separated,” Chen says. This work was published in the Journal of the National Cancer Institute.

Chen and his colleagues then showed that celecoxib inhibited a molecule known as Akt.

Chen describes Akt as an important molecular switch that transmits information from the cell surface down into the cell to interact with a variety of target molecules. He and colleagues further found that the blocking of Akt by celecoxib in cancer cells triggered programmed cell death, a process also known as apoptosis.

For this study, Chen and his colleagues used molecular-modeling methods and computational chemistry to alter celecoxib’s basic molecular structure in ways calculated to maximize its Akt-blocking and cell-death inducing activities.

This work generated a series of derivative molecules, all of which were far different in structure from celecoxib. Two of these proved to be 30 to 50 times more potent than celecoxib in inducing programmed cell death in cancer cells growing in the laboratory tests.

One of the derivatives, OSU 03012, is now undergoing toxicological and pharmacological testing by the NCI’s RAID program. Data from these tests will help move the agent forward into human testing in a phase I clinical trial, probably within one to two years.

Funding from the National Cancer Institute and the Department of Defense Prostate Cancer Research Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>