Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Cancer Agent Built From Anti-Inflammation Drug

08.07.2004


Researchers have used a recently developed anti-inflammatory drug as a starting point to construct a possible new, targeted anti-cancer agent. The new agent works by triggering cancer cells to self-destruct.

The agent is now undergoing laboratory testing by the National Cancer Institute’s (NCI) Rapid Access to Intervention Development (RAID) program.

The potential new drug was developed by researchers at The Ohio State University College of Pharmacy and the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Presently, the agent is known as OSU-03012. The study is published in the June 15 issue of the journal Cancer Research.



“This new agent works by inhibiting a fundamental signaling point in cancer cells, making it potentially effective in a wide range of cancer types,” says study leader Ching-Shih Chen, professor of pharmacy and a researcher with OSU’s Comprehensive Cancer Center.

“We also have evidence that it may sensitize leukemia, and breast and lung cancers to conventional chemotherapy.”

The new agent is based on the drug celecoxib, a nonsteroidal anti-inflammatory drug, or NSAID. Like many NSAIDs, celecoxib also reduces the risk of colorectal cancer when taken regularly.

Scientists knew from the start that celecoxib helps control inflammation by inhibiting an enzyme known as cyclooxygenase-2 (COX-2). But they couldn’t explain the drug’s modest anti-cancer activity.

Past work led by Chen provided the answer.

“We found that celecoxib’s ability to cause cell death and to control inflammation were two different pharmacological properties, and that the two properties could be separated,” Chen says. This work was published in the Journal of the National Cancer Institute.

Chen and his colleagues then showed that celecoxib inhibited a molecule known as Akt.

Chen describes Akt as an important molecular switch that transmits information from the cell surface down into the cell to interact with a variety of target molecules. He and colleagues further found that the blocking of Akt by celecoxib in cancer cells triggered programmed cell death, a process also known as apoptosis.

For this study, Chen and his colleagues used molecular-modeling methods and computational chemistry to alter celecoxib’s basic molecular structure in ways calculated to maximize its Akt-blocking and cell-death inducing activities.

This work generated a series of derivative molecules, all of which were far different in structure from celecoxib. Two of these proved to be 30 to 50 times more potent than celecoxib in inducing programmed cell death in cancer cells growing in the laboratory tests.

One of the derivatives, OSU 03012, is now undergoing toxicological and pharmacological testing by the NCI’s RAID program. Data from these tests will help move the agent forward into human testing in a phase I clinical trial, probably within one to two years.

Funding from the National Cancer Institute and the Department of Defense Prostate Cancer Research Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>