Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Anti-Cancer Agent Built From Anti-Inflammation Drug


Researchers have used a recently developed anti-inflammatory drug as a starting point to construct a possible new, targeted anti-cancer agent. The new agent works by triggering cancer cells to self-destruct.

The agent is now undergoing laboratory testing by the National Cancer Institute’s (NCI) Rapid Access to Intervention Development (RAID) program.

The potential new drug was developed by researchers at The Ohio State University College of Pharmacy and the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Presently, the agent is known as OSU-03012. The study is published in the June 15 issue of the journal Cancer Research.

“This new agent works by inhibiting a fundamental signaling point in cancer cells, making it potentially effective in a wide range of cancer types,” says study leader Ching-Shih Chen, professor of pharmacy and a researcher with OSU’s Comprehensive Cancer Center.

“We also have evidence that it may sensitize leukemia, and breast and lung cancers to conventional chemotherapy.”

The new agent is based on the drug celecoxib, a nonsteroidal anti-inflammatory drug, or NSAID. Like many NSAIDs, celecoxib also reduces the risk of colorectal cancer when taken regularly.

Scientists knew from the start that celecoxib helps control inflammation by inhibiting an enzyme known as cyclooxygenase-2 (COX-2). But they couldn’t explain the drug’s modest anti-cancer activity.

Past work led by Chen provided the answer.

“We found that celecoxib’s ability to cause cell death and to control inflammation were two different pharmacological properties, and that the two properties could be separated,” Chen says. This work was published in the Journal of the National Cancer Institute.

Chen and his colleagues then showed that celecoxib inhibited a molecule known as Akt.

Chen describes Akt as an important molecular switch that transmits information from the cell surface down into the cell to interact with a variety of target molecules. He and colleagues further found that the blocking of Akt by celecoxib in cancer cells triggered programmed cell death, a process also known as apoptosis.

For this study, Chen and his colleagues used molecular-modeling methods and computational chemistry to alter celecoxib’s basic molecular structure in ways calculated to maximize its Akt-blocking and cell-death inducing activities.

This work generated a series of derivative molecules, all of which were far different in structure from celecoxib. Two of these proved to be 30 to 50 times more potent than celecoxib in inducing programmed cell death in cancer cells growing in the laboratory tests.

One of the derivatives, OSU 03012, is now undergoing toxicological and pharmacological testing by the NCI’s RAID program. Data from these tests will help move the agent forward into human testing in a phase I clinical trial, probably within one to two years.

Funding from the National Cancer Institute and the Department of Defense Prostate Cancer Research Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

nachricht Activation of 2 genes linked to development of atherosclerosis
28.10.2016 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>