Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Cancer Agent Built From Anti-Inflammation Drug

08.07.2004


Researchers have used a recently developed anti-inflammatory drug as a starting point to construct a possible new, targeted anti-cancer agent. The new agent works by triggering cancer cells to self-destruct.

The agent is now undergoing laboratory testing by the National Cancer Institute’s (NCI) Rapid Access to Intervention Development (RAID) program.

The potential new drug was developed by researchers at The Ohio State University College of Pharmacy and the OSU Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. Presently, the agent is known as OSU-03012. The study is published in the June 15 issue of the journal Cancer Research.



“This new agent works by inhibiting a fundamental signaling point in cancer cells, making it potentially effective in a wide range of cancer types,” says study leader Ching-Shih Chen, professor of pharmacy and a researcher with OSU’s Comprehensive Cancer Center.

“We also have evidence that it may sensitize leukemia, and breast and lung cancers to conventional chemotherapy.”

The new agent is based on the drug celecoxib, a nonsteroidal anti-inflammatory drug, or NSAID. Like many NSAIDs, celecoxib also reduces the risk of colorectal cancer when taken regularly.

Scientists knew from the start that celecoxib helps control inflammation by inhibiting an enzyme known as cyclooxygenase-2 (COX-2). But they couldn’t explain the drug’s modest anti-cancer activity.

Past work led by Chen provided the answer.

“We found that celecoxib’s ability to cause cell death and to control inflammation were two different pharmacological properties, and that the two properties could be separated,” Chen says. This work was published in the Journal of the National Cancer Institute.

Chen and his colleagues then showed that celecoxib inhibited a molecule known as Akt.

Chen describes Akt as an important molecular switch that transmits information from the cell surface down into the cell to interact with a variety of target molecules. He and colleagues further found that the blocking of Akt by celecoxib in cancer cells triggered programmed cell death, a process also known as apoptosis.

For this study, Chen and his colleagues used molecular-modeling methods and computational chemistry to alter celecoxib’s basic molecular structure in ways calculated to maximize its Akt-blocking and cell-death inducing activities.

This work generated a series of derivative molecules, all of which were far different in structure from celecoxib. Two of these proved to be 30 to 50 times more potent than celecoxib in inducing programmed cell death in cancer cells growing in the laboratory tests.

One of the derivatives, OSU 03012, is now undergoing toxicological and pharmacological testing by the NCI’s RAID program. Data from these tests will help move the agent forward into human testing in a phase I clinical trial, probably within one to two years.

Funding from the National Cancer Institute and the Department of Defense Prostate Cancer Research Program supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>