Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent molecules revolutionising impact protection

08.07.2004


A new material which is set to revolutionise the way we protect our bodies from impact and injury is being launched by specialist technology company d3o Lab. d3o Lab were granted a government SMART award in 2001 and following a significant breakthrough they secured a second award in 2003 for the development which is now nearing commercialisation.

Since 2000 Richard Palmer and Dr. Phil Green have been working out of the University of Hertfordshire’s research and development centre, and a design studio in London on this exciting new technology.

The inspiration for d3o (dee-three-oh) first came when materials scientist Dr Phil Green found himself sitting off the piste in the Alps in 1999, nursing a bruised elbow after a snowboarding accident.



"It occurred to me that all the available impact protection systems work on a macro scale, and because of this they are restrictive, uncomfortable and actually pretty ineffective. I knew if I could get a system to work at a molecular level we could have an amazing product. Five years of research later we do - d3o," said Phil, who is Technical Director at d3o Lab.

d3o, is a unique material made of intelligent Molecules. They flow with you when you move but on shock lock together to protect you, returning to their original state when the impact is over.

Dr Green explains, "The molecules simply flow past each other at low rates of movement when you are moving your body naturally, but when they are subject to an impact that requires the molecules to move very quickly they instantaneously lock together by linking with each other to form a protective barrier. As soon as the impact has passed they immediately unlock to provide flow and normal flexibility. This all happens in less than a 1000th of a second, and the faster they are impacted the more quickly they react: true intelligence!?

The story of one of the most well-known step change technologies in the sports market, Gore-Tex,? has many similarities with d3o. Before Gore-Tex? you had to compromise your comfort for the sake of keeping dry. d3o works in the same way, allowing you to have protection that doesn?t compromise your freedom of movement ? revolutionary. While the protection equipment currently on the market is bulky and unsightly, d3o can be integrated directly into clothing and is light, breathable, washable, flexible, allowing total freedom of movement.

d3o Lab’s Managing Director, Richard Palmer, said: "Sometimes it’s hard to convince people what a truly amazing innovation this is until you demonstrate it. I was wearing a prototype shirt incorporating d3o, and at one point I stood up and slammed my elbow onto the table as hard as I could, sending coffee cups flying. Once they saw me doing that - without flinching - they understood what I was saying."

Richard Palmer | alfa
Further information:
http://www.d3olab.com

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>