Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson-Based Technology Promises to Help Find Hard-to-Diagnose Appendicitis Cases

07.07.2004


About half of the 700,000 annual cases of suspected appendicitis in the United States lack the usual symptoms – pain in the lower right abdomen, fever and a rising white blood cell count – making the decision to operate somewhat problematic. Now, thanks to a new imaging agent based on technology developed by nuclear medicine researchers at Thomas Jefferson University in Philadelphia, doctors may finally have a way to rapidly and accurately detect those hard-to-diagnose cases.

The U.S. Food and Drug Administration has approved NeutroSpec, a monoclonal antibody that binds to a type of infection-fighting white blood cell, for use in patients five years and older who have inconclusive symptoms of appendicitis.

NeutroSpec is “radiolabeled,” meaning it carries technetium, a radioactive substance. When injected into the blood, NeutroSpec finds and binds to a certain receptor on neutrophils, white blood cells that the body uses to fight infection. Doctors can then locate the antibody and the infection site by using a device called a gamma camera. In case of hard to diagnose cases, the gamma camera pictures allow doctors to accurately see if the appendix is infected or not and permits them to treat the cause appropriately.



“NeutroSpec is easy, quick and reliable – and has no known risk,” says Mathew Thakur, Ph.D., professor of radiology and radiation oncology and director of radiopharmaceutical research at Jefferson Medical College of Thomas Jefferson University, who holds a patent on the antibody and who invented and patented the antibody radiolabeling process.

In 1976, Dr. Thakur, then at the Medical Research Council at Hammersmith Hospital in London, and his colleagues invented a procedure that allowed nuclear medicine physicians and scientists to label such infection fighting blood cells for the first time outside the patient’s body. The procedure continues to be used routinely around the world to find unknown infections in the body, he says.

But labeling cells outside the body is “lengthy, cumbersome and requires technical skills,” says Dr.Thakur. It poses potential risk in handling blood as well as accidentally injecting a blood product into another patient with infection, and requires 24 hours to get accurate results after the labeled cells are injected back into the patient.

Neutrospec, which labels the cells inside the patient’s body, also provides results in less than one hour. During clinical trials, NeutroSpec accurately detected appendicitis 60 percent of the time in less than 5 minutes after injection and nearly 100 percent of appendicitis cases were diagnosed within an hour. “This is a tremendous advantage to the management of patients’ condition,” says Dr.Thakur, who began his research on NeutroSpec in 1984 and did the first clinical feasibility study in 1991.

Dr. Thakur says the new technique will have broad applications. Approximately 15 percent to 30 percent of all appendectomies are unnecessary because the appendix is actually normal. Neutrospec, in helping physicians rapidly and accurately diagnose appendicitis in cases without straightforward symptoms can reduce the number of unneeded surgeries.

“The radiolabeled antibody will enable physicians to pinpoint infections in a number of tissue types,” he says. “It could also be used for patients who have fevers of unknown origin, bone infections (osteomyelitis) and diabetic foot infections.”

NeutroSpec will be marketed by Mallinckrodt Imaging, a business unit of Tyco Healthcare, a global medical products company. Jefferson previously licensed its patents to Palatin Technologies, Inc., of Cranbury, N.J., which subsequently entered into a marketing and distribution agreement with Mallinckrodt. The original antibody was obtained from the Wistar Institute in Philadelphia.

Steven Benowitz | EurekAlert!
Further information:
http://www.jeffersonhospital.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>