Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson-Based Technology Promises to Help Find Hard-to-Diagnose Appendicitis Cases

07.07.2004


About half of the 700,000 annual cases of suspected appendicitis in the United States lack the usual symptoms – pain in the lower right abdomen, fever and a rising white blood cell count – making the decision to operate somewhat problematic. Now, thanks to a new imaging agent based on technology developed by nuclear medicine researchers at Thomas Jefferson University in Philadelphia, doctors may finally have a way to rapidly and accurately detect those hard-to-diagnose cases.

The U.S. Food and Drug Administration has approved NeutroSpec, a monoclonal antibody that binds to a type of infection-fighting white blood cell, for use in patients five years and older who have inconclusive symptoms of appendicitis.

NeutroSpec is “radiolabeled,” meaning it carries technetium, a radioactive substance. When injected into the blood, NeutroSpec finds and binds to a certain receptor on neutrophils, white blood cells that the body uses to fight infection. Doctors can then locate the antibody and the infection site by using a device called a gamma camera. In case of hard to diagnose cases, the gamma camera pictures allow doctors to accurately see if the appendix is infected or not and permits them to treat the cause appropriately.



“NeutroSpec is easy, quick and reliable – and has no known risk,” says Mathew Thakur, Ph.D., professor of radiology and radiation oncology and director of radiopharmaceutical research at Jefferson Medical College of Thomas Jefferson University, who holds a patent on the antibody and who invented and patented the antibody radiolabeling process.

In 1976, Dr. Thakur, then at the Medical Research Council at Hammersmith Hospital in London, and his colleagues invented a procedure that allowed nuclear medicine physicians and scientists to label such infection fighting blood cells for the first time outside the patient’s body. The procedure continues to be used routinely around the world to find unknown infections in the body, he says.

But labeling cells outside the body is “lengthy, cumbersome and requires technical skills,” says Dr.Thakur. It poses potential risk in handling blood as well as accidentally injecting a blood product into another patient with infection, and requires 24 hours to get accurate results after the labeled cells are injected back into the patient.

Neutrospec, which labels the cells inside the patient’s body, also provides results in less than one hour. During clinical trials, NeutroSpec accurately detected appendicitis 60 percent of the time in less than 5 minutes after injection and nearly 100 percent of appendicitis cases were diagnosed within an hour. “This is a tremendous advantage to the management of patients’ condition,” says Dr.Thakur, who began his research on NeutroSpec in 1984 and did the first clinical feasibility study in 1991.

Dr. Thakur says the new technique will have broad applications. Approximately 15 percent to 30 percent of all appendectomies are unnecessary because the appendix is actually normal. Neutrospec, in helping physicians rapidly and accurately diagnose appendicitis in cases without straightforward symptoms can reduce the number of unneeded surgeries.

“The radiolabeled antibody will enable physicians to pinpoint infections in a number of tissue types,” he says. “It could also be used for patients who have fevers of unknown origin, bone infections (osteomyelitis) and diabetic foot infections.”

NeutroSpec will be marketed by Mallinckrodt Imaging, a business unit of Tyco Healthcare, a global medical products company. Jefferson previously licensed its patents to Palatin Technologies, Inc., of Cranbury, N.J., which subsequently entered into a marketing and distribution agreement with Mallinckrodt. The original antibody was obtained from the Wistar Institute in Philadelphia.

Steven Benowitz | EurekAlert!
Further information:
http://www.jeffersonhospital.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>