Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D structure of anthrax toxin complex solved

05.07.2004


Scientists have determined a three-dimensional (3-D) molecular image of how anthrax toxin enters human cells, giving scientists more potential targets for blocking the toxin, the lethal part of anthrax bacteria. The finding also points to a possible way to design anthrax toxin molecules that selectively attack tumor cells, as described in the journal Nature published online July 4. The study, funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, was led by Robert C. Liddington, Ph.D., of the Burnham Institute in La Jolla, CA.



"This elegant work provides important new leads for the development of novel antitoxins to protect people from anthrax, a dangerous and serious bioterror threat," says NIAID Director Anthony S. Fauci, M.D. "It also leads us closer to therapies that could save lives late in the disease when large amounts of toxin are present and antibiotics are less effective."

Using an intense X-ray beam to determine the position of atoms in a crystal form of the protein complex, a scientific team mapped the 3-D structure of one of the anthrax toxin’s proteins docked to a human anthrax toxin receptor. Anthrax toxin uses a protein known as protective antigen to gain entry into human or animal cells. The protective antigen protein can bind either of two different cell receptors: CMG2 and TEM8. In this study, scientists solved the puzzle of the molecular structure of the protective antigen protein and CMG2 bound together.


Previously, different groups of scientists in separate studies had determined the 3-D structures of the anthrax protective antigen protein and the CMG2 receptor--but only when unbound from each other. The structure of the protective antigen protein-CMG2 receptor complex offers a more precise, finely detailed snapshot of a crucial step in the intricate molecular choreography that ushers anthrax toxin into cells. This detailed, 3-D image provides researchers clearer targets for shutting down this process. For researchers working on anthrax antitoxins, the new 3-D image is like having a roadmap that connects two cities rather than having only separate maps of the two cities.

The newly revealed structure also points to a potential new tumor treatment using a genetically modified anthrax toxin, Dr. Liddington says. The TEM8 cell receptor is commonly found in cells lining the blood vessels of tumors. Although the structure of the TEM8 receptor has not been determined, scientists expect it to be similar to that of the CMG2 receptor. "Computer modeling could enable us to design a version of the anthrax toxin that binds only to TEM8 and not to CMG2," he notes. Such a toxin would kill tumor cells while leaving ordinary cells unharmed.

| EurekAlert!
Further information:
http://www.niaid.nih.gov.

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>