Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D structure of anthrax toxin complex solved


Scientists have determined a three-dimensional (3-D) molecular image of how anthrax toxin enters human cells, giving scientists more potential targets for blocking the toxin, the lethal part of anthrax bacteria. The finding also points to a possible way to design anthrax toxin molecules that selectively attack tumor cells, as described in the journal Nature published online July 4. The study, funded by the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, was led by Robert C. Liddington, Ph.D., of the Burnham Institute in La Jolla, CA.

"This elegant work provides important new leads for the development of novel antitoxins to protect people from anthrax, a dangerous and serious bioterror threat," says NIAID Director Anthony S. Fauci, M.D. "It also leads us closer to therapies that could save lives late in the disease when large amounts of toxin are present and antibiotics are less effective."

Using an intense X-ray beam to determine the position of atoms in a crystal form of the protein complex, a scientific team mapped the 3-D structure of one of the anthrax toxin’s proteins docked to a human anthrax toxin receptor. Anthrax toxin uses a protein known as protective antigen to gain entry into human or animal cells. The protective antigen protein can bind either of two different cell receptors: CMG2 and TEM8. In this study, scientists solved the puzzle of the molecular structure of the protective antigen protein and CMG2 bound together.

Previously, different groups of scientists in separate studies had determined the 3-D structures of the anthrax protective antigen protein and the CMG2 receptor--but only when unbound from each other. The structure of the protective antigen protein-CMG2 receptor complex offers a more precise, finely detailed snapshot of a crucial step in the intricate molecular choreography that ushers anthrax toxin into cells. This detailed, 3-D image provides researchers clearer targets for shutting down this process. For researchers working on anthrax antitoxins, the new 3-D image is like having a roadmap that connects two cities rather than having only separate maps of the two cities.

The newly revealed structure also points to a potential new tumor treatment using a genetically modified anthrax toxin, Dr. Liddington says. The TEM8 cell receptor is commonly found in cells lining the blood vessels of tumors. Although the structure of the TEM8 receptor has not been determined, scientists expect it to be similar to that of the CMG2 receptor. "Computer modeling could enable us to design a version of the anthrax toxin that binds only to TEM8 and not to CMG2," he notes. Such a toxin would kill tumor cells while leaving ordinary cells unharmed.

| EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>