Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transplants - are mice leading the way?

05.07.2004


A new protocol for bone marrow transplants, which does not require the destruction of the recipient’s immune system before transfer of the new bone marrow, is described by a group of Oxford scientists in the 6th of July issue of the Proceedings of the National Academy of Sciences of the United States of America.

Furthermore, Luis Graça, Alain Le Moine, Herman Waldmann and colleagues from the University of Oxford, UK also found that following bone marrow transplant it is possible to successfully transplant other organs from the same donor, including skin, the most difficult organ to be successfully transplanted, into this now hybrid/chimeric bone marrow recipient.

The number of human tissue transplants is on the increase all over the world. In Europe, hundreds of thousands of tissue transplants are performed each year, while only in 1999 as many as 750 000 people in the United States of America received human tissue, twice as many as in 1990.



Graça, Le Moine and Waldmann’s team have been working with mice for a number of years to find alternative protocols for safer and more effective organ transplantations.

Because the immune system has evolved to react against any foreign intruder while remaining non-responsive against its own body, organs from other individuals are seen as foreign and so potentially dangerous which leads to their rapid destruction by the immune system, the body’s defence mechanism. This creates serious problems in clinical transplantation and until now only the use of strong immunosuppressive drugs permits relative transplantation success. This however is not ideal, not only because rejection frequently occurs but also because these drugs compromise the entire immune system making individuals much more susceptible to infection or cancer.

Graça, Le Moine and colleagues work on an alternative model of tolerance based on the use of antibodies against several proteins found in the cells involved in organ rejection. Although the idea of antibodies is not new, these have been mostly used to delete entire populations of cells involved in the graft rejection process. This has the disadvantage of creating “ holes” in the immune system and, like the immunosuppressive therapies widely used in transplant, increase the recipient/host’s disease susceptibility.

What is interesting about the Oxford’s scientists work is that their antibodies do not seem to kill the host cells involved in organ rejection but instead apparently re-programme these cells rendering them tolerant to the foreign organ while leaving the remaining immune system intact and fully operational. It is this specificity of the treatment, the capacity of only making tolerant the cells specific for the foreign organ while keeping the remaining immune system undamaged, that makes Graça, Le Moine and colleagues’ work so exciting.

However, it is still not clear what the mechanism is behind this organ-specific tolerance and this has created problems to the development of human therapies. In the work now published, Graça, Le Moine and colleagues investigate claims that CD4+CD25+ TCR+ cells, a group of cells of the immune system called this way because they express in their cellular membrane the three proteins: CD4, CD25 and TCR, are capable of regulating specific parts of the immune system without affecting the remaining immune cells and might be the cells responsible for inducing the type of organ transplant tolerance observed after Graça and Le Moine’s antibody therapy.

Unfortunately, the results by the team of scientists do not support the hypothesis. Nevertheless, this is still a very important result as it undoubtedly challenges the wide spread assumption that these cells are main regulators of immune responses.

Furthermore, Graça, Le Moine and colleagues also describe a new protocol for bone marrow transplantation and successfully achieve a skin graft transplant between totally different donors and recipients something never achieved before without immune deletion.

In fact, the team of scientists show how a course of their non-depleting antibodies, which are specific for proteins found on the membrane of the cells involved in graft rejection, when given at the same time as a bone marrow transplant, leads to complete acceptance of this foreign bone marrow. This is extraordinarily important as the normal protocol for bone marrow transplants require at least partial destruction of the recipient immune system so the new bone marrow would not be rejected.

Graça, Le Moine and colleagues also show for the first time that skin from a fully foreign donor is also accepted if this organ is transplanted together with bone marrow cells from the same donor while receiving the team’s set of tolerogenic antibodies.

These results are extremely important first because they describe an alternative and much more effective protocol to control the immune system in bone marrow transplants. Secondly, their new protocol of transferring bone marrow together with the organ to transplant proved much more effective, to such a extent that even a totally foreign skin graft was successful, something which has never been accomplished before in the absence of immunosuppression. In a world where more and more transplants are necessary as result of an increasing aging population this is a critical breakthrough.

Finally, Graça, Moine and colleagues capacity of “ re-programme” the immune system without affecting its whole capacity to fight infection might prove extremely important also in other diseases where pathology results from deregulation of the immune system as it seems to be the case in diabetes, rheumatoid arthritis or multiple sclerosis.

Ana Paula Gravito | alfa
Further information:
http://www.oct.mct.pt

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>