Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

King Crab Heals Scalds And Sores

02.07.2004


Of course, not the crab itself, but its hepatopancreas, which is a gland performing functions of both liver and pancreas. And not an entire hepatopancreas, but only some of its enzymes isolated by the Moscow scientists supported by the Russian Foundation for Basic Research (RFBR) and Foundation for Assistance to Small Innovative Enterprises (FASIE).



Doctor of chemical sciences Galina Rudenskaya from the Moscow State University and her colleagues from small enterprise TRINITA have made an important discovery in medicine, thanks to funding extended by the RFBR and FASIE.

The preparation based on enzymes extracted from king crab’s hepatopancreas (gland performing functions of both liver and pancreas) heals scalds, sores, and trophic ulcers that were either incurable or hardly curable before. Surgeons that participate in trials are eager to get some "crab grease". But only a very small amount of the ointment has been obtained by now, and it still needs to be approved by the Pharmacological Committee. And only 100 grams of enzymes that are active components of the ointment have been isolated. However, technique for their isolation and purification has already been developed and patented.


So, the preparation is based on enzymes, so-called, proteases. The most important among them, collagenase, catalyzes the hydrolysis of collagen that is a tough fibrous protein constituent of bone, tendon, and skin. It is collagen that makes the skin resilient, water-proof, and resistant to various agents. Most active collagenases are extracted from pathogenic microorganisms causing gas gangrene. Hence, the extraction of such collagenases is a labour-consuming and risky process. But collagenase is also contained in the hepatopancreas of king crab, in non-hazardous surroundings of crab’s intestines.

Collagenase is needed for the following. In case of a serious damage of the skin (a scald, scar remaining after an operation, or trophic ulcers), the wound healing is impeded by small fragments of tissues, particularly, collagen remaining there. Those cannot be decomposed to single molecules because of an absence of essential enzyme, collagenase. Hence, those fragments of tissues decay and cause necrosis. The wound heals slowly and difficultly, with the appearance of pus and ugly scars.

The preparation developed by the University chemists contains collagenase itself and some other enzymes. By the expression of Rudenskaya, "collagenase tears collagen into pieces that are further chewed by other enzymes".

Afterwards, the wound healing requires a building material for a new elastic skin, which is supplied by preparation "Eikonol" developed by the enterprise TRINITA headed by V.A. Isaev. The active component of the latter is extracted from fish. Thus, all components of the medicine are obtained from food objects and don’t cause undesirable side effects. Raw materials used in the medicine manufacture are cheap wastes of fishing and crabbing.

The scientists have also invented a new technique for extracting active enzymes from crab’s internal organs and their purifying. This is so-called affine chromatography, for which special sorbents have been synthesized. The extract containing various necessary and unnecessary compounds moves through columns filled by the sorbents.

The latter consist of a silica-containing material bond with molecules of antibiotic, whose basket-like structure catches needed enzymes, proteases, from the solution. Thus, proteases are retained in the sorbent, and all admixtures pass by.

All together, that resembles a rod with bait tasty for a single fish species. Then, proteases are washed off by another solution, concentrated using a nontrivial technique developed by the scientists, and dried. Provided that obtained powder is properly stored (in a freezer at -20 degrees Celsius), its medical properties can be preserved for many years. When the laboratory technique will be adjusted to the pharmaceutical industry (the scientists believe they can do that very soon), there will be enough enzymes for everybody.

Sergey Komarov | alfa
Further information:
http://www.genebee.msu.su

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>