Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Does Cloning Create Abnormalities? Scientists Take A Step Towards Finding Out

30.06.2004


Significant abnormalities observed in cloned mice help reinforce the need to continue to avoid the reproductive cloning of humans, a scientist said on Wednesday 30 June 2004 at the 20th annual conference of the European Society of Human Reproduction and Embryology. Dr. Takumi Takeuchi, from Cornell University, New York, USA told a media briefing that he and Dr. Gianpiero Palermo’s team had compared imprinting abnormalities (the process where specific genes inherited from both parents are silent) in mice embryos derived from assisted reproduction techniques and from cloning.



“We found significantly impaired development in the cloned embryos compared with those derived from more conventional ART techniques”, said Dr. Takeuchi, “and this has made us more convinced that reproductive cloning is unsafe and should not be applied to humans.”

Drs. Takeuchi and Palermo were prompted to undertake the research by concerns about the increased incidence of imprinting abnormalities in children born after ARTs. The most prominent of these is Beckwith-Wiedemann syndrome, where children are born larger than normal.


Scientists also knew that cloned animals had been born with a similar condition, called ‘large offspring syndrome’. Dr.Takeuchi’s team set out to study whether the disorders arising in the ART system and those in cloned animals were comparable. The team took mouse oocytes and divided them into three groups. 68 were inseminated by ICSI, 37 activated parthenogenetically (without involving male gametes), and 77 were cloned by injected a cell nucleus into an egg where the nucleus had been removed. Of this latter group, 43 underwent first embryonic cleavage (the first few divisions of an embryonic egg) and 15 became full blastocysts.

“The embryos created by parthenogenesis and those from ICSI reached the blastocyst stage at the same rate, unlike the clones, where only 30% got that far”, said Dr. Takeuchi. “This appears to be due to the abnormal gene expression we saw in the cloned group. This not only explains the developmental impairment of the cloned group, but may in future be helpful in identifying environmental culture condition that are deleterious to the development of ART embryos,” he said.

Dr. Takeuchi said that as yet it was difficult to make a direct link with a specific cause for the abnormalities. “But there are a number of possibilities”, he said. “They could be linked to fertility medications utilized to induce superovulation, or the progesterone employed to help implantation; in vitro culture conditions which could be related to the length of the culture or the concentrations of certain media components such as serum or even a specific amino acid. Finally, we cannot exclude the contribution of the peculiar genetic makeup of patients’ gametes, together with the specific ART procedure”, he said.

Identification of gene expression abnormalities would help to monitor the development of reproductive techniques prior to their application to routine medical practice, said Dr. Takeuchi.

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>