Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomal chaos in early embryonic development is linked to abnormalities in cytokinesis and spindle formation

30.06.2004


Abnormalities in the spindles (the bi-polar thread like structures that link and pull the chromosomes during cell division) of human embryos before implantation may be the primary reason for many of the chromosome defects observed in early human development, a scientist said on Wednesday 30 June 2004 at the 20th annual conference of the European Society of Human Reproduction and Embryology. Dr. Katerina Chatzimeletiou, from the Bridge Fertility Centre, London, UK, told the conference that her research had shown for the first time that such abnormalities occur throughout the development of the pre-implantation embryo.

“Use of the diagnostic technique fluorescence in situ hybridisation (FISH), that utilises fluorescence probes to identify specific chromosomes, has previously revealed a large number of chromosomal abnormalities including ‘chaos’ in embryos before implantation”, she said. “Up till now it was believed that these may be due to technical artefacts and not representative of the true status of the embryos. Our work has shown that this is not the case. In fact, we have identified a major pathway leading to chromosomal and nuclear abnormalities in the preimplantation embryo in vitro.”

During cell division, spindle fibres align the 46 chromosomes along the middle of the cell and then forces are exerted that pull the chromosomes to opposite directions. A bi-polar spindle ensures that each of the two daughter cells receives a copy of each of the 46 chromosomes. Dr. Chatzimeletiou’s team found that some spindles in cleavage and blastocyst stage embryos contain more than two poles (tripolar or tetraplolar), and in those it is impossible for the 46 chromosomes to be segregated equally to two daughter cells, as they would be pulled to three or more directions. “This in turn inevitably leads to chromosomal chaos”, she said.



Dr. Chatzimeletiou and colleagues in Greece and Britain selected 185 cleavage to blastocyst stage human embryos and treated them with markers in order to visualise the microtubules, which are involved with motion activities within the cell, and spindles. All the blastocyst stage embryos had at least one normal spindle, but 23% of blastocysts had an abnormal spindle in addition to the normal ones. At the earlier cleavage to morula stages more abnormalities were seen (29% of spindles were abnormal vs 9% at the blastocyst). Chromosome loss was also seen in 16% of embryos and although this was frequently associated with abnormal spindle configurations, some otherwise normal spindles were also linked to chromosome loss.

“We think that multipolar spindles are due to abnormal replication of centrosomes (the organising centres and precursors of spindles in the cell)”, said Dr. Chatzimeletiou. Each cell contains one centrosome that duplicates and moves to opposite poles in order to form a bipolar spindle. Multipolar spindles most likely arise in cells that have undergone one cycle of failed cytoplasmic division and have become either binucleate or tetraploid Those cells now contain 2 centrosomes instead of 1 from the previous division and if they duplicate asynchronously or synchronously tripolar or tetrapolar spindles will form.

“Whether the accumulation of chromosomally abnormal cells due to abnormalmultipolar spindle formation leads to embryonic arrest or whether embryonic arrest is the cause behind cytokinetic failure and multipolar spindle formation warrants further investigation,” said Dr. Chatzemeteliou.

“Centrosomes are inherited via the sperm, so in future we hope to compare spindle abnormalities in embryos from patients with male factor infertility to embryos from patients with other fertility problems. We also hope to look at the cytoskeleton of embryos cultured in a number of different media so that we can investigate whether different culture conditions have an effect on spindle formation.” Furthermore it would also be interesting to investigate, whether factors in the oocytes are responsible for spindle abnormalities and if cytoplasmic donation from good quality eggs, which is thought to improve embryo quality, could alleviate them.

Implications of this research for patients could be considerable. “Our work has considerable importance for patients undergoing preimplantation genetic screening for aneuploidy (an incorrect number of chromosomes), said Dr. Chatzimeletiou. “We have shown that the result obtained from a single biopsied cell might not be valid for the whole embryo due to mosaicism (the presence of two or more cell lines which differ from each other in chromosome number or structure, in an individual that has developed from a single fertilized egg).

For patients who are undergoing preimplantation genetic diagnosis (PGD) for a homozygous recessive gene disorder (where an abnormal disease causing gene is inherited from both parents), there could be a serious misdiagnosis of a carrier as being affected if the chromosome containing the normal gene is lost in the biopsied cell through a chromosome assembly defect.” On the other hand, in a dominant disorder, where one parent has a disease-causing gene that dominates its normal counterpart, loss of the affected chromosome in the biopsied cell could result in the embryo being wrongly diagnosed as normal.

The identification of embryos with abnormal spindles using polarising microscopy, could provide a powerful non-invasive method for better embryo selection, which may lead to increased implantation rates. “Rather than simply rejecting embryos with spindle abnormalities”, said Dr. Chatzimeletiou, “we are hopeful that in future it may be possible to rescue them by identifying those cells that contain the abnormal spindles and removing them from the embryo by biopsy. This could ensure a greater embryo conserve and higher chance for implantation.“

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>