Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomal chaos in early embryonic development is linked to abnormalities in cytokinesis and spindle formation

30.06.2004


Abnormalities in the spindles (the bi-polar thread like structures that link and pull the chromosomes during cell division) of human embryos before implantation may be the primary reason for many of the chromosome defects observed in early human development, a scientist said on Wednesday 30 June 2004 at the 20th annual conference of the European Society of Human Reproduction and Embryology. Dr. Katerina Chatzimeletiou, from the Bridge Fertility Centre, London, UK, told the conference that her research had shown for the first time that such abnormalities occur throughout the development of the pre-implantation embryo.

“Use of the diagnostic technique fluorescence in situ hybridisation (FISH), that utilises fluorescence probes to identify specific chromosomes, has previously revealed a large number of chromosomal abnormalities including ‘chaos’ in embryos before implantation”, she said. “Up till now it was believed that these may be due to technical artefacts and not representative of the true status of the embryos. Our work has shown that this is not the case. In fact, we have identified a major pathway leading to chromosomal and nuclear abnormalities in the preimplantation embryo in vitro.”

During cell division, spindle fibres align the 46 chromosomes along the middle of the cell and then forces are exerted that pull the chromosomes to opposite directions. A bi-polar spindle ensures that each of the two daughter cells receives a copy of each of the 46 chromosomes. Dr. Chatzimeletiou’s team found that some spindles in cleavage and blastocyst stage embryos contain more than two poles (tripolar or tetraplolar), and in those it is impossible for the 46 chromosomes to be segregated equally to two daughter cells, as they would be pulled to three or more directions. “This in turn inevitably leads to chromosomal chaos”, she said.



Dr. Chatzimeletiou and colleagues in Greece and Britain selected 185 cleavage to blastocyst stage human embryos and treated them with markers in order to visualise the microtubules, which are involved with motion activities within the cell, and spindles. All the blastocyst stage embryos had at least one normal spindle, but 23% of blastocysts had an abnormal spindle in addition to the normal ones. At the earlier cleavage to morula stages more abnormalities were seen (29% of spindles were abnormal vs 9% at the blastocyst). Chromosome loss was also seen in 16% of embryos and although this was frequently associated with abnormal spindle configurations, some otherwise normal spindles were also linked to chromosome loss.

“We think that multipolar spindles are due to abnormal replication of centrosomes (the organising centres and precursors of spindles in the cell)”, said Dr. Chatzimeletiou. Each cell contains one centrosome that duplicates and moves to opposite poles in order to form a bipolar spindle. Multipolar spindles most likely arise in cells that have undergone one cycle of failed cytoplasmic division and have become either binucleate or tetraploid Those cells now contain 2 centrosomes instead of 1 from the previous division and if they duplicate asynchronously or synchronously tripolar or tetrapolar spindles will form.

“Whether the accumulation of chromosomally abnormal cells due to abnormalmultipolar spindle formation leads to embryonic arrest or whether embryonic arrest is the cause behind cytokinetic failure and multipolar spindle formation warrants further investigation,” said Dr. Chatzemeteliou.

“Centrosomes are inherited via the sperm, so in future we hope to compare spindle abnormalities in embryos from patients with male factor infertility to embryos from patients with other fertility problems. We also hope to look at the cytoskeleton of embryos cultured in a number of different media so that we can investigate whether different culture conditions have an effect on spindle formation.” Furthermore it would also be interesting to investigate, whether factors in the oocytes are responsible for spindle abnormalities and if cytoplasmic donation from good quality eggs, which is thought to improve embryo quality, could alleviate them.

Implications of this research for patients could be considerable. “Our work has considerable importance for patients undergoing preimplantation genetic screening for aneuploidy (an incorrect number of chromosomes), said Dr. Chatzimeletiou. “We have shown that the result obtained from a single biopsied cell might not be valid for the whole embryo due to mosaicism (the presence of two or more cell lines which differ from each other in chromosome number or structure, in an individual that has developed from a single fertilized egg).

For patients who are undergoing preimplantation genetic diagnosis (PGD) for a homozygous recessive gene disorder (where an abnormal disease causing gene is inherited from both parents), there could be a serious misdiagnosis of a carrier as being affected if the chromosome containing the normal gene is lost in the biopsied cell through a chromosome assembly defect.” On the other hand, in a dominant disorder, where one parent has a disease-causing gene that dominates its normal counterpart, loss of the affected chromosome in the biopsied cell could result in the embryo being wrongly diagnosed as normal.

The identification of embryos with abnormal spindles using polarising microscopy, could provide a powerful non-invasive method for better embryo selection, which may lead to increased implantation rates. “Rather than simply rejecting embryos with spindle abnormalities”, said Dr. Chatzimeletiou, “we are hopeful that in future it may be possible to rescue them by identifying those cells that contain the abnormal spindles and removing them from the embryo by biopsy. This could ensure a greater embryo conserve and higher chance for implantation.“

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>