Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene chip technology will lead to quick and accurate genetic testing for cystic fibrosis

28.06.2004


A single genetic test that is capable of detecting all mutations involved in the development of cystic fibrosis could be just a few years away, the 20th annual conference of the European Society of Human Reproduction and Embryology heard today (Monday 28 June).

Researchers at Monash University in Melbourne, Australia, have discovered that recently developed microarray (or “gene chip”) technology* can be used successfully to detect one of the commonest cystic fibrosis (CF) genetic mutations with 100% accuracy.

This means that, once the technology has been refined, gene chips could be used to detect all CF mutations in a single, quick and easy test that would produce almost immediate results. The analysis could be carried out on embryos during preimplantation genetic diagnosis (PGD), so that only healthy embryos would be transferred to the woman. The technology could be used during PGD for other genetic diseases too.



Ms Chelsea Salvado, a PhD student working with Professor Alan Trounson and Dr David Cram at the Institute of Reproduction and Development at Monash, explained: “Currently there are many CF mutations diagnosed in the PGD laboratory, each requiring the development of a different diagnostic technique. However, the introduction of microarray technology would provide a uniform, single test, enabling PGD to be offered to couples presenting with different mutations without first having to undergo an extensive pre-clinical work-up. At present, this work-up can take anywhere between a week and six months to complete, depending on how easy it is to match the parental mutations with the markers used to prevent misdiagnosis.”

Until now, the possibilities of using microarray technology in PGD had been largely unexplored. Ms Salvado set out to discover the diagnostic potential of gene chips by testing them on the ∆F508 mutation, which is the commonest CF mutation, accounting for 80% of all CF mutations worldwide.

She created gene chips that held information on the normal and diseased versions of ∆F508 and then tested them on DNA samples obtained from single cells and from groups of ten cells. Despite some initial problems with amplifying the samples successfully, meaning that an extra step had to be added to the process, the final results showed that the gene chips could diagnose the ∆F508 mutation with 100% accuracy in the 30 samples investigated.

“This proved the concept that the ∆F508 mutation can be reliably and accurately diagnosed at the single cell level using microarray technology,” said Ms Salvado. “Further research is needed to improve the method, although many of the problems associated with the amplification of single cells would be reduced or eliminated if blastocyst biopsy (biopsy of 10 cells) was the method of choice in PGD.”

There are over 1,000 mutations known to cause CF and their frequency varies between countries and communities. “For example, in Australia 10 mutations are diagnosed routinely, all of which involve a mutation at a single point on the cystic fibrosis gene. Current work within our laboratory has shown that these point mutations may be detected with as much reliability and accuracy as the ?F508 mutation,” said Ms Salvado.

It will be at least two to three years before this discovery starts to benefit patients. She said: “This research needs to be enhanced by commercial microarray companies who have the capacity and the resources to develop more complex arrays with many different CF mutations. Further development of the method is critical to ensuring reliable microarray-based genetic diagnosis.”

However, Ms Salvado believes that her research will have a significant impact in the future on couples carrying CF mutations. “Microarray technology will lead to semi-automated genetic testing for both PGD and prenatal diagnosis, providing a rapid diagnosis, thus reducing the stress of couples waiting for a result. The introduction of microarray technology could lead to PGD being offered for all genetic diseases in the future.”

Emma Mason | alfa
Further information:
http://www.eshre.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>