Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Halo blight in the bean plant

25.06.2004


The oily stains accompanying the yellowish rings on the leaves and pods of bean plants are some of the symptoms of the disease known as “Halo blight” – highly important in temperate zones like Spain. The seeds are one of the most important sources of transmission of the pathogen, which means the detection of this bacterium in seeds is one of the most efficient control methods. Nevertheless, agricultural engineer Arantza Rico Martínez has shown, in her PhD thesis, that this blight pathogen cannot be detected in Spain using routine techniques for the certification of bean seeds.



Unexpected results

Halo blight is the common name for the disease caused by the bacteria Pseudomonas syringae pv. phaseolicola. One of the aims of this PhD was precisely to genetic characterisation of the bacteria in order to make advances in the control of the disease. To this end, 152 diseased beanstalks, obtained from commercial crop fields between 1993 and 2001.


However, the results of the analyses were not the expected ones. Contrary to prevision, the phenotypic and molecular characterisation of the stumps of P. syringae pv. phaseolicola showed that most of them did not produce an antimetabolitic toxin known as phaseolotoxin, described as specific to this patovar and, apart from not producing it, it was shown that they lacked the genes responsible for producing this toxin.

This finding is relevant because one of the most effective control methods for the illness is based on the detection of the presence of the genes responsible for the biosynthesis of phaseolotoxin in the seed. Given that neither the toxin nor the genes can be detected, it is impossible for this method to detect the bacteria responsible for halo blight.

The thesis also analysed other serological methods, which are routinely used in the detection of this bacteria and it was shown that neither were the non-toxigenic isolated beansttalks detected using this methodology.

The importance of the results is greater if analysed in an international context, given that it is the first time the existence of a non-toxigenic population of P. syringae pv. phaseolicola with epidemiological importance has been described, to the point where it is seen as the main cause of halo blight in Spain . In this sense, a molecular more exhaustive characterisation of the non-toxigenic beanstalks has enabled Arantza Rico’s research group to propose the subdivision of the patovar phaseolicola in two groups differentiated by the possession of the genes responsible for the biosynthesis of phaseolotoxin.

Origin of fireblight

Another aim of the thesis was to genetically characterise Spanish populations of the bacteria Erwinia amylovora, cause of the disease known as “Fuego bacteriano” or fireblight which affects species from the rosacea family, amongst which are fruit trees like the apple and pear and ornamental bushes. The symptoms of this disease are very characteristic: the plant has necrosed leaves, acquiring a burnt aspect.

Given the high genetic homogeneity of E. amylovora, very little is known about the epidemiological ways for the dispersion of the disease. So, with the aim of finding out how this pathogen introduces itself, the thesis used various techniques of genetic characterisation. The conclusion drawn is that the observed diversity supports the hypothesis of multiple introductions of the pathogen in Spain and in other European countries. This disease, moreover, was first detected in Gipuzkoa in 1995.

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>