Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity in the deep blue seas

25.06.2004



Nature magazine has published an article by Xabier Irigoien, a researcher at AZTI, the Basque Fisheries and Marine Technological Research Centre. The article provides data on the diversity of marine life at the bottom of the sea - particularly amongst algae.

Species diversity

Most research carried out on the diversity of species has been with land animals. According to these investigations, diversity is greater in life-forms with medium productivity – defined as the relation between energy consumed and biomass produced.



But these patterns linking diversity and productivity in land animals are questionable when dealing with smaller beings as, for example, in the case of those at the lowest scale of the marine food cycle. According to some research, these species do not follow the pattern of animals analysed with respect to diversity.

In this research undertaken by Xabier Irigoien, on the other hand, it is shown that, in the case of algae – phytoplankton – these do, in fact, reach the maximum point of diversity with medium productivity. According to these results, it could well be that many of the patterns used in terrestrial ecology may also be applicable to marine ecology.

To arrive at this conclusion, the AZTI researcher undertook studies of more than 350 samples taken from various oceans in the world. In these analyses, the dominant pattern linking diversity and productivity is unimodal. In this pattern, when the productivity of the
species is small, its diversity is also small; when productivity is medium, diversity is maximum and, when the productivity increases, the diversity diminishes once again. In other words, the diversity has a triangular pattern.

Why unimodal pattern?

In the case of phytoplankton there could be a number of reasons why diversity is maximum when productivity is medium. The history of the community, the distribution of habitats, the struggle to find food and resources, the relationship between different species, the abundance or lack of food, the size of the species, etc. could be the cause of this diversity pattern. For example, if on the coast the waters are rich in nutrients and the productivity is high, there will be many predators and, thus, only those species of phytoplankton best adapted and prepared to face up to the predators will survive. The result is scant diversity. On the other hand, if the waters lack sufficient nutrients and productivity is small, few species will survive and, once again, diversity will be low. When the nutrients are sufficient and the productivity is medium, is when diversity amongst the phytoplankton is at its maximum.

Moreover, this pattern is even more interesting if zooplankton is analysed. Zooplankton feeds on phytoplankton and, according to Irigoien’s research, diversity amongst both life-forms is not related. This is not very usual amongst land animals, given that greater diversity amongst large prey usually translates into the same diversity amongst the predators.

Differences in size of species on which other species feed could also be the cause of the difference between land and marine animals. Specifically, phytoplankton is diminutive but the complexity of marine hydrodynamics is great.

So, what defines diversity amongst zooplankton? According to the AZTI researcher, just as occurs with phytoplankton, the struggle for nutrients and adaptation to predators are key. Thus, there is still much to investigate in the theory of the predator and prey and it could even be that that, in the end, this relation is discarde as far as diversity is concerned.

Raul Lopez de Gereñu | Basque research
Further information:
http://www.azti.es

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>