Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity in the deep blue seas

25.06.2004



Nature magazine has published an article by Xabier Irigoien, a researcher at AZTI, the Basque Fisheries and Marine Technological Research Centre. The article provides data on the diversity of marine life at the bottom of the sea - particularly amongst algae.

Species diversity

Most research carried out on the diversity of species has been with land animals. According to these investigations, diversity is greater in life-forms with medium productivity – defined as the relation between energy consumed and biomass produced.



But these patterns linking diversity and productivity in land animals are questionable when dealing with smaller beings as, for example, in the case of those at the lowest scale of the marine food cycle. According to some research, these species do not follow the pattern of animals analysed with respect to diversity.

In this research undertaken by Xabier Irigoien, on the other hand, it is shown that, in the case of algae – phytoplankton – these do, in fact, reach the maximum point of diversity with medium productivity. According to these results, it could well be that many of the patterns used in terrestrial ecology may also be applicable to marine ecology.

To arrive at this conclusion, the AZTI researcher undertook studies of more than 350 samples taken from various oceans in the world. In these analyses, the dominant pattern linking diversity and productivity is unimodal. In this pattern, when the productivity of the
species is small, its diversity is also small; when productivity is medium, diversity is maximum and, when the productivity increases, the diversity diminishes once again. In other words, the diversity has a triangular pattern.

Why unimodal pattern?

In the case of phytoplankton there could be a number of reasons why diversity is maximum when productivity is medium. The history of the community, the distribution of habitats, the struggle to find food and resources, the relationship between different species, the abundance or lack of food, the size of the species, etc. could be the cause of this diversity pattern. For example, if on the coast the waters are rich in nutrients and the productivity is high, there will be many predators and, thus, only those species of phytoplankton best adapted and prepared to face up to the predators will survive. The result is scant diversity. On the other hand, if the waters lack sufficient nutrients and productivity is small, few species will survive and, once again, diversity will be low. When the nutrients are sufficient and the productivity is medium, is when diversity amongst the phytoplankton is at its maximum.

Moreover, this pattern is even more interesting if zooplankton is analysed. Zooplankton feeds on phytoplankton and, according to Irigoien’s research, diversity amongst both life-forms is not related. This is not very usual amongst land animals, given that greater diversity amongst large prey usually translates into the same diversity amongst the predators.

Differences in size of species on which other species feed could also be the cause of the difference between land and marine animals. Specifically, phytoplankton is diminutive but the complexity of marine hydrodynamics is great.

So, what defines diversity amongst zooplankton? According to the AZTI researcher, just as occurs with phytoplankton, the struggle for nutrients and adaptation to predators are key. Thus, there is still much to investigate in the theory of the predator and prey and it could even be that that, in the end, this relation is discarde as far as diversity is concerned.

Raul Lopez de Gereñu | Basque research
Further information:
http://www.azti.es

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>