Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diversity in the deep blue seas


Nature magazine has published an article by Xabier Irigoien, a researcher at AZTI, the Basque Fisheries and Marine Technological Research Centre. The article provides data on the diversity of marine life at the bottom of the sea - particularly amongst algae.

Species diversity

Most research carried out on the diversity of species has been with land animals. According to these investigations, diversity is greater in life-forms with medium productivity – defined as the relation between energy consumed and biomass produced.

But these patterns linking diversity and productivity in land animals are questionable when dealing with smaller beings as, for example, in the case of those at the lowest scale of the marine food cycle. According to some research, these species do not follow the pattern of animals analysed with respect to diversity.

In this research undertaken by Xabier Irigoien, on the other hand, it is shown that, in the case of algae – phytoplankton – these do, in fact, reach the maximum point of diversity with medium productivity. According to these results, it could well be that many of the patterns used in terrestrial ecology may also be applicable to marine ecology.

To arrive at this conclusion, the AZTI researcher undertook studies of more than 350 samples taken from various oceans in the world. In these analyses, the dominant pattern linking diversity and productivity is unimodal. In this pattern, when the productivity of the
species is small, its diversity is also small; when productivity is medium, diversity is maximum and, when the productivity increases, the diversity diminishes once again. In other words, the diversity has a triangular pattern.

Why unimodal pattern?

In the case of phytoplankton there could be a number of reasons why diversity is maximum when productivity is medium. The history of the community, the distribution of habitats, the struggle to find food and resources, the relationship between different species, the abundance or lack of food, the size of the species, etc. could be the cause of this diversity pattern. For example, if on the coast the waters are rich in nutrients and the productivity is high, there will be many predators and, thus, only those species of phytoplankton best adapted and prepared to face up to the predators will survive. The result is scant diversity. On the other hand, if the waters lack sufficient nutrients and productivity is small, few species will survive and, once again, diversity will be low. When the nutrients are sufficient and the productivity is medium, is when diversity amongst the phytoplankton is at its maximum.

Moreover, this pattern is even more interesting if zooplankton is analysed. Zooplankton feeds on phytoplankton and, according to Irigoien’s research, diversity amongst both life-forms is not related. This is not very usual amongst land animals, given that greater diversity amongst large prey usually translates into the same diversity amongst the predators.

Differences in size of species on which other species feed could also be the cause of the difference between land and marine animals. Specifically, phytoplankton is diminutive but the complexity of marine hydrodynamics is great.

So, what defines diversity amongst zooplankton? According to the AZTI researcher, just as occurs with phytoplankton, the struggle for nutrients and adaptation to predators are key. Thus, there is still much to investigate in the theory of the predator and prey and it could even be that that, in the end, this relation is discarde as far as diversity is concerned.

Raul Lopez de Gereñu | Basque research
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>