Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare, tiny find in West Australian waters

24.06.2004


A miniscule marine creature caught during a recent Indian Ocean research voyage is believed to be the first of its kind identified in the Southern Hemisphere

A miniscule marine creature caught during a recent Indian Ocean research voyage is believed to be the first of its kind identified in the Southern Hemisphere.The single celled organism, supporting what looks like 6 legs is a phaeodaria from the family coelodendridae, also known as a radiolarian. Measuring only 1.4 mm, the organism was found during an investigation of ocean eddies by the National Marine Facility, Southern Surveyor.

"It was a case of being in the right place at the right time with the right people," says PhD student Harriet Paterson, who discovered the radiolarian. Harriet works with the Strategic Research Fund for the Marine Environment (SRFME) a joint CSIRO-West Australian Government marine research team based at Floreat, Perth. "Our objective was to collect samples of marine life in ocean eddies and this was a complete surprise to us, and I’m sure to other researchers in this field from Northern Hemisphere institutions," Ms Paterson said. Ms Paterson detailed her research to colleagues during a science symposium in Perth yesterday (June 16).



The Director of SRFME, Dr John Keesing, said the discovery is an example of how state and federal agencies are coming together to tackle the problem of exploring and managing Australia’s vast and valuable ocean resources.

"Australia’s territory is 70 per cent ocean. We need more ocean scientists. We need to be able to provide hard scientific facts about our oceans that will allow legislators, regulators and industry to be able to address the challenge of managing our ocean resources.

"The West Australian Government, CSIRO Marine Research and the CSIRO Wealth from Oceans Flagship have come together to provide a program to train and supervise new PhD students in the area of marine science. This discovery is a direct result of that program," said Dr Keesing.

The find has excited scientists researching the micro zooplankton world. The pheodaria was captured in a sediment trap deployed within an ’upwelling’ eddy bringing cold and nutrient-rich deep ocean water to the surface by Dr Stephan Pesant a member of the University of Western Australia team lead by Dr Anya Waite, Centre for Water Research.

The micro zooplankton species is understood to live from depths of 100 to 5000 metres. Its food range extends from ocean algae to tiny shellfish. It consumes prey in the same manner as a spider, remineralising part of the ’ocean snow’ and helping to sustain other small forms of marine life.

Ms Paterson has searched the scientific literature and believe this is the first sample to be found in the Southern Hemisphere. The first sample was recorded during the world’s first oceanographic voyage by the British ship Challenger in the 1870’s, and then more than a century later, US scientist Dr Neil Swanberg collected 18 specimens down to a depth of 500 metres in one voyage from a submersible in 1986.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>