Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal Mechanism Controlling Biodiversity

24.06.2004


Nature publishes the first comprehensive overview of the biodiversity patterns of phytoplankton, the tiny plants that float on the surface of the sea, on 24 June.

An international research team, partly funded by the Natural Environment Research Council, found striking similarities between biodiversity patterns on land and in the oceans prompting the conclusion that there is a universal mechanism controlling biodiversity. The oceans, by far the largest ecosystem on the planet, are the least understood.

The worldwide study of phytoplankton found that biodiversity appears to be dependent on the biomass in a particular habitat. Biomass, the total mass of all living organisms in a habitat, is a good indicator of the energy held in a system and hence it’s productivity. This finding is important because it is consistent with biodiversity on land.



The researchers discovered that phytoplankton biodiversity is greatest at medium levels of biomass. That is, if there is a huge phytoplankton bloom in a particular area it will probably be dominated by a single species, (or by a very small number of species). If there is little growth in a low-productive area, that too will be dominated by a single species or a limited number of species.

Phytoplankton species reach their maximum number at an intermediate biomass. These findings could be due to the fact that in waters of low biomass, or productivity, there are not enough nutrients for the survival of many species. On the other hand, in highly productive waters, with massive plankton blooms, there is not much light available but numerous predators, and only the strongest competitors survive.

Researchers did discover some discrepancies between biodiversity on land and ocean. They found only a very weak link between phytoplankton biodiversity and the biodiversity of their main consumers, zooplankton, the tiny animals that feed on phytoplankton. This is contrary to biodiversity on land. They suggest size is the key factor here, not the marine environment.

The amazing biodiversity of plants in tropical rainforests is accompanied by a similarly astonishing biodiversity of animals feeding on them. The size and complexity of trees in a forest provide many niches for smaller organisms to exploit encouraging diversity on land. Phytoplankton have no such complexity and contribute little structure to their environment. The team suggest that the size of primary producers, such as phytoplankton, may be an important factor in the way ecological communities are organised.

The researchers arguments for a universal mechanism controlling biodiversity are strengthened by the finding that biodiversity patterns in phytoplankton are remarkably similar throughout the world’s ocean despite obvious differences in environmental conditions - temperature, light, nutrients, currents and mixing.

The most important universal processes determining plankton biodiversity are nutrient availability, shading, and grazing by zooplankton species.

Phytoplankton are at the bottom of the marine food web, and hence have a major impact on marine resources including fish populations. Knowledge on the biodiversity of phytoplankton is important since some plankton species are highly edible whereas others are not, just like green grass and thistles on land.

Phytoplankton could also play a major role in climate change as they absorb huge quantities of carbon dioxide. During recent years various experiments have been carried out to fertilize the oceans with iron in order to stimulate phytoplankton productivity and carbon dioxide uptake. These experiments induced major shifts in plankton species.

This research is a major milestone in the understanding and prediction of plankton species composition and their role in global processes.

Owen Gaffney | NERC
Further information:
http://www.nerc.ac.uk
http://www.amt-uk.org

More articles from Life Sciences:

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>