Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universal Mechanism Controlling Biodiversity

24.06.2004


Nature publishes the first comprehensive overview of the biodiversity patterns of phytoplankton, the tiny plants that float on the surface of the sea, on 24 June.

An international research team, partly funded by the Natural Environment Research Council, found striking similarities between biodiversity patterns on land and in the oceans prompting the conclusion that there is a universal mechanism controlling biodiversity. The oceans, by far the largest ecosystem on the planet, are the least understood.

The worldwide study of phytoplankton found that biodiversity appears to be dependent on the biomass in a particular habitat. Biomass, the total mass of all living organisms in a habitat, is a good indicator of the energy held in a system and hence it’s productivity. This finding is important because it is consistent with biodiversity on land.



The researchers discovered that phytoplankton biodiversity is greatest at medium levels of biomass. That is, if there is a huge phytoplankton bloom in a particular area it will probably be dominated by a single species, (or by a very small number of species). If there is little growth in a low-productive area, that too will be dominated by a single species or a limited number of species.

Phytoplankton species reach their maximum number at an intermediate biomass. These findings could be due to the fact that in waters of low biomass, or productivity, there are not enough nutrients for the survival of many species. On the other hand, in highly productive waters, with massive plankton blooms, there is not much light available but numerous predators, and only the strongest competitors survive.

Researchers did discover some discrepancies between biodiversity on land and ocean. They found only a very weak link between phytoplankton biodiversity and the biodiversity of their main consumers, zooplankton, the tiny animals that feed on phytoplankton. This is contrary to biodiversity on land. They suggest size is the key factor here, not the marine environment.

The amazing biodiversity of plants in tropical rainforests is accompanied by a similarly astonishing biodiversity of animals feeding on them. The size and complexity of trees in a forest provide many niches for smaller organisms to exploit encouraging diversity on land. Phytoplankton have no such complexity and contribute little structure to their environment. The team suggest that the size of primary producers, such as phytoplankton, may be an important factor in the way ecological communities are organised.

The researchers arguments for a universal mechanism controlling biodiversity are strengthened by the finding that biodiversity patterns in phytoplankton are remarkably similar throughout the world’s ocean despite obvious differences in environmental conditions - temperature, light, nutrients, currents and mixing.

The most important universal processes determining plankton biodiversity are nutrient availability, shading, and grazing by zooplankton species.

Phytoplankton are at the bottom of the marine food web, and hence have a major impact on marine resources including fish populations. Knowledge on the biodiversity of phytoplankton is important since some plankton species are highly edible whereas others are not, just like green grass and thistles on land.

Phytoplankton could also play a major role in climate change as they absorb huge quantities of carbon dioxide. During recent years various experiments have been carried out to fertilize the oceans with iron in order to stimulate phytoplankton productivity and carbon dioxide uptake. These experiments induced major shifts in plankton species.

This research is a major milestone in the understanding and prediction of plankton species composition and their role in global processes.

Owen Gaffney | NERC
Further information:
http://www.nerc.ac.uk
http://www.amt-uk.org

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>