Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Researchers Develop Microchip to Track Genetic Signature of Cancer and Normal Tissue

22.06.2004


MicroRNAs (miRNAs), tiny pieces of genetic material that can serve as stop signs for gene expression and protein synthesis, are thought to be important in the development of cancer. Now, researchers at Jefferson Medical College and the Kimmel Cancer Center of Thomas Jefferson University in Philadelphia have developed a technique that allows them to find which miRNA genes are expressed – and how – in both cancerous and normal tissue.


Scientists, led by Carlo Croce, M.D., director of Jefferson’s Kimmel Cancer Center and professor of microbiology and immunology at Jefferson Medical College, have developed a microarray chip onto which they were able to put all the known miRNA genes in both human and mouse. They found that each tissue they tested had its own characteristic pattern of miRNA gene expression.

The work might enable scientists to gain a better understanding of the roles of miRNAs in cancer and provide targets for future drug development. They reported their findings June 21, 2004 online in the Proceedings of the National Academy of Sciences.

Dr. Croce explains that miRNAs are thought to play important roles in regulating gene expression during development and cell differentiation. MiRNAs inhibit the function of their targets, typically messenger RNA, which is involved in gene expression. They either degrade the messenger RNA or block its translation. Cells in organisms from yeast to mammals make interfering RNA to shut off gene expression in development.



Dr. Croce and his colleagues had previously shown that deletions in miRNA genes were involved in B-cell chronic lymphocytic leukemia (CLL), the most common adult leukemia in the Western world. They also had reported that human miRNA genes are frequently located in “fragile” areas of the genome that are vulnerable to mutation. “We think the miRNA genes are in fact involved in many human cancers,” he says.

“As a result, we have a number of markers that allow us to characterize specific tissue in specific cells,” Dr. Croce says. “Now the chip allows us to compare normal tissue to malignant tissue.

“This kind of approach will give us important clues about the gene regulation in a number of cells in normal and cancer tissue,” he says. “It opens new avenues for treatment because these miRNA genes are so small, they can get into cells and be used as drugs. Characterizing their targets might help in understanding cancer phenotypes.”

MiRNA genes can function differently. Take miR-16, for example, which is one of the miRNA genes Dr. Croce has studied in CLL. It functions as a tumor suppressor, and probably some of its targets are oncogenes, he says. Tumor suppressor genes are normal genes that protect against the development of cancer. Oncogenes, on the other hand, promote excessive cell growth, the hallmark of cancer.

“If the miR is expressed at a high level, however, the RNA level of the targets would be low and the expression of the oncogene would be low,” he says. Conversely, “knocking out” the miR gene would mean the expression of the oncogene would be high.

“MiRNAs are a new mechanism involved in malignant transformation,” he says. “I think it will be found to be a very generalized mechanism and provide a lot of opportunities for treatment.

“The chip is an easy way to test for miRNA alterations,” he says. “When you look at a cancer, the chip will tell you which miRNAs are in fact there and which are not. Then you can study the targets and figure out their role in cancer.

“The next step is to continue to find out how these genes are regulated and what they regulate – their targets and their roles in cancers.”

Steven Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>