Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Researchers Develop Microchip to Track Genetic Signature of Cancer and Normal Tissue

22.06.2004


MicroRNAs (miRNAs), tiny pieces of genetic material that can serve as stop signs for gene expression and protein synthesis, are thought to be important in the development of cancer. Now, researchers at Jefferson Medical College and the Kimmel Cancer Center of Thomas Jefferson University in Philadelphia have developed a technique that allows them to find which miRNA genes are expressed – and how – in both cancerous and normal tissue.


Scientists, led by Carlo Croce, M.D., director of Jefferson’s Kimmel Cancer Center and professor of microbiology and immunology at Jefferson Medical College, have developed a microarray chip onto which they were able to put all the known miRNA genes in both human and mouse. They found that each tissue they tested had its own characteristic pattern of miRNA gene expression.

The work might enable scientists to gain a better understanding of the roles of miRNAs in cancer and provide targets for future drug development. They reported their findings June 21, 2004 online in the Proceedings of the National Academy of Sciences.

Dr. Croce explains that miRNAs are thought to play important roles in regulating gene expression during development and cell differentiation. MiRNAs inhibit the function of their targets, typically messenger RNA, which is involved in gene expression. They either degrade the messenger RNA or block its translation. Cells in organisms from yeast to mammals make interfering RNA to shut off gene expression in development.



Dr. Croce and his colleagues had previously shown that deletions in miRNA genes were involved in B-cell chronic lymphocytic leukemia (CLL), the most common adult leukemia in the Western world. They also had reported that human miRNA genes are frequently located in “fragile” areas of the genome that are vulnerable to mutation. “We think the miRNA genes are in fact involved in many human cancers,” he says.

“As a result, we have a number of markers that allow us to characterize specific tissue in specific cells,” Dr. Croce says. “Now the chip allows us to compare normal tissue to malignant tissue.

“This kind of approach will give us important clues about the gene regulation in a number of cells in normal and cancer tissue,” he says. “It opens new avenues for treatment because these miRNA genes are so small, they can get into cells and be used as drugs. Characterizing their targets might help in understanding cancer phenotypes.”

MiRNA genes can function differently. Take miR-16, for example, which is one of the miRNA genes Dr. Croce has studied in CLL. It functions as a tumor suppressor, and probably some of its targets are oncogenes, he says. Tumor suppressor genes are normal genes that protect against the development of cancer. Oncogenes, on the other hand, promote excessive cell growth, the hallmark of cancer.

“If the miR is expressed at a high level, however, the RNA level of the targets would be low and the expression of the oncogene would be low,” he says. Conversely, “knocking out” the miR gene would mean the expression of the oncogene would be high.

“MiRNAs are a new mechanism involved in malignant transformation,” he says. “I think it will be found to be a very generalized mechanism and provide a lot of opportunities for treatment.

“The chip is an easy way to test for miRNA alterations,” he says. “When you look at a cancer, the chip will tell you which miRNAs are in fact there and which are not. Then you can study the targets and figure out their role in cancer.

“The next step is to continue to find out how these genes are regulated and what they regulate – their targets and their roles in cancers.”

Steven Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>