Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Researchers Develop Microchip to Track Genetic Signature of Cancer and Normal Tissue

22.06.2004


MicroRNAs (miRNAs), tiny pieces of genetic material that can serve as stop signs for gene expression and protein synthesis, are thought to be important in the development of cancer. Now, researchers at Jefferson Medical College and the Kimmel Cancer Center of Thomas Jefferson University in Philadelphia have developed a technique that allows them to find which miRNA genes are expressed – and how – in both cancerous and normal tissue.


Scientists, led by Carlo Croce, M.D., director of Jefferson’s Kimmel Cancer Center and professor of microbiology and immunology at Jefferson Medical College, have developed a microarray chip onto which they were able to put all the known miRNA genes in both human and mouse. They found that each tissue they tested had its own characteristic pattern of miRNA gene expression.

The work might enable scientists to gain a better understanding of the roles of miRNAs in cancer and provide targets for future drug development. They reported their findings June 21, 2004 online in the Proceedings of the National Academy of Sciences.

Dr. Croce explains that miRNAs are thought to play important roles in regulating gene expression during development and cell differentiation. MiRNAs inhibit the function of their targets, typically messenger RNA, which is involved in gene expression. They either degrade the messenger RNA or block its translation. Cells in organisms from yeast to mammals make interfering RNA to shut off gene expression in development.



Dr. Croce and his colleagues had previously shown that deletions in miRNA genes were involved in B-cell chronic lymphocytic leukemia (CLL), the most common adult leukemia in the Western world. They also had reported that human miRNA genes are frequently located in “fragile” areas of the genome that are vulnerable to mutation. “We think the miRNA genes are in fact involved in many human cancers,” he says.

“As a result, we have a number of markers that allow us to characterize specific tissue in specific cells,” Dr. Croce says. “Now the chip allows us to compare normal tissue to malignant tissue.

“This kind of approach will give us important clues about the gene regulation in a number of cells in normal and cancer tissue,” he says. “It opens new avenues for treatment because these miRNA genes are so small, they can get into cells and be used as drugs. Characterizing their targets might help in understanding cancer phenotypes.”

MiRNA genes can function differently. Take miR-16, for example, which is one of the miRNA genes Dr. Croce has studied in CLL. It functions as a tumor suppressor, and probably some of its targets are oncogenes, he says. Tumor suppressor genes are normal genes that protect against the development of cancer. Oncogenes, on the other hand, promote excessive cell growth, the hallmark of cancer.

“If the miR is expressed at a high level, however, the RNA level of the targets would be low and the expression of the oncogene would be low,” he says. Conversely, “knocking out” the miR gene would mean the expression of the oncogene would be high.

“MiRNAs are a new mechanism involved in malignant transformation,” he says. “I think it will be found to be a very generalized mechanism and provide a lot of opportunities for treatment.

“The chip is an easy way to test for miRNA alterations,” he says. “When you look at a cancer, the chip will tell you which miRNAs are in fact there and which are not. Then you can study the targets and figure out their role in cancer.

“The next step is to continue to find out how these genes are regulated and what they regulate – their targets and their roles in cancers.”

Steven Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>