Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way of looking at the human genome

17.06.2004


Under the EU Sixth Framework Programme (FP6) for Research and Development (2002-2006) 2.2 million Euros have been awarded to the 3DGENOME-research program. FP6 is one of the world’s largest research programmes, with a budget of 17.5 billion Euros, of which around 3 billion Euros is available for life sciences research. The main objective of the 3DGENOME program is to understand how the human genome, consisting of a number of very long DNA molecules that carry our genetic information, are coiled up inside our cells. By changing the way that DNA is folded, cells control the switching on and off genes, which are the units of genetic information. Results will help to understand errors in our genetic system that for instance result in tumour formation. The research program is conducted by a consortium of seven European partners and is coordinated by the Swammerdam Institute for Life Sciences of the University of Amsterdam in The Netherlands.



The human cell orchestrates the activity of its about 35,000 genes in an extremely efficient and reliably way. These genes are bits of information on DNA. Each of our cells contains DNA molecules with a total length of 2 meters, folded inside a cell nucleus of only 1/100th of a millimetre diameter. This is comparable to packing 20 km of thin wire inside just a tennis ball. Evidently, the DNA thread is extremely folded inside a cell. This folding plays an important role in how a cell switches genes on and off, thereby deciding how the cell behaves. Folding decides whether a cell becomes a skin cell, a liver cell or a neuron, and whether a cell is healthy or sick.

The 3dgenome program should lead to a breakthrough in our understanding of how our genome functions. Using advanced microscopic techniques in combination with novel data analysis software, the consortium of European scientists intend to establish a three-dimensional map of the DNA fibre inside the human cell. This spatial structure will be related to patterns of switched off and stitched on genes along the DNA molecule.


Since it is very likely that the three-dimensional organisation of genomes is the same for all animals, the 3DGENOME program, in addition to human cells, incorporates studies on cells from the mouse and from fruit flies, two well-studied organisms. Each of these organisms has specific technical advantages, such as (i) detailed information about how genes are arranged on the DNA and which genes are switched on and off, (ii) technology to visualise DNA inside the cell using state-of-the-art microscopy, and (iii) methods to analyse microscopy images and to obtain information about the three-dimensional folding of DNA.

Frans Stravers | alfa

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>