Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way of looking at the human genome

17.06.2004


Under the EU Sixth Framework Programme (FP6) for Research and Development (2002-2006) 2.2 million Euros have been awarded to the 3DGENOME-research program. FP6 is one of the world’s largest research programmes, with a budget of 17.5 billion Euros, of which around 3 billion Euros is available for life sciences research. The main objective of the 3DGENOME program is to understand how the human genome, consisting of a number of very long DNA molecules that carry our genetic information, are coiled up inside our cells. By changing the way that DNA is folded, cells control the switching on and off genes, which are the units of genetic information. Results will help to understand errors in our genetic system that for instance result in tumour formation. The research program is conducted by a consortium of seven European partners and is coordinated by the Swammerdam Institute for Life Sciences of the University of Amsterdam in The Netherlands.



The human cell orchestrates the activity of its about 35,000 genes in an extremely efficient and reliably way. These genes are bits of information on DNA. Each of our cells contains DNA molecules with a total length of 2 meters, folded inside a cell nucleus of only 1/100th of a millimetre diameter. This is comparable to packing 20 km of thin wire inside just a tennis ball. Evidently, the DNA thread is extremely folded inside a cell. This folding plays an important role in how a cell switches genes on and off, thereby deciding how the cell behaves. Folding decides whether a cell becomes a skin cell, a liver cell or a neuron, and whether a cell is healthy or sick.

The 3dgenome program should lead to a breakthrough in our understanding of how our genome functions. Using advanced microscopic techniques in combination with novel data analysis software, the consortium of European scientists intend to establish a three-dimensional map of the DNA fibre inside the human cell. This spatial structure will be related to patterns of switched off and stitched on genes along the DNA molecule.


Since it is very likely that the three-dimensional organisation of genomes is the same for all animals, the 3DGENOME program, in addition to human cells, incorporates studies on cells from the mouse and from fruit flies, two well-studied organisms. Each of these organisms has specific technical advantages, such as (i) detailed information about how genes are arranged on the DNA and which genes are switched on and off, (ii) technology to visualise DNA inside the cell using state-of-the-art microscopy, and (iii) methods to analyse microscopy images and to obtain information about the three-dimensional folding of DNA.

Frans Stravers | alfa

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>