Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Espionage May Have Driven The Evolution Of Bee Language According To UCSD-Led Study In Brazil

16.06.2004


Close-up of aggressive stingless bee
Photo Credit: James Nieh, UCSD


Aggressive stingless bee attacking an Africanized honeybee (a "killer" bee)
Photo Credit: James Nieh, UCSD


A discovery by a University of California, San Diego biologist that some species of bees exploit chemical clues left by other bee species to guide their kin to food provides evidence that eavesdropping may be an evolutionary driving force behind some bees’ ability to conceal communication inside the hive, using a form of animal language to encode food location.

Bees can use two main forms of communication to tell their hive mates where to find food: abstract representations such as sounds or dances within the hive or scent markings outside the hive to mark the food and/or the route to it. In 1999, James Nieh, an assistant professor of biology at UCSD, published a paper in which he hypothesized communication within the hive may have evolved as a way of avoiding espionage by competitors.

Nieh’s most recent study, a collaboration with Brazilian biologists published June 16 in the early on-line version of the journal Proceedings of the Royal Society, is strong support for that hypothesis because it shows that bees can indeed use the chemical markings deposited by bees of other species to home in on and take over their food source. The paper will appear in print in Proceedings of the Royal Society in August.



“We show that foragers of an aggressive species searching for an unscented food source at a new location, detected and preferentially oriented to odor marks deposited by a competitor and then rapidly dominated the food source, killing or driving off all of the competitors within ten minutes,” says Nieh. “The ability of foragers to communicate food location within the confines of the hive, where other bees cannot eavesdrop, would be a clear evolutionary advantage where floral resources are seasonally scarce.”

Nieh along with Felipe Contrera and Vera Imperatriz-Fonseca from the University of São Paulo, Brazil and Lillian Barreto from Agricultural Development Agency of the the State of Bahia, Brazil studied interactions between two species of bees, Trigona spinipes and Melipona rufiventris. Both species are stingless bees, a diverse group prevalent in South and Central America. Because Trigona spinipes is a highly aggressive species, the researchers hypothesized that if these bees could use olfactory eavesdropping they would be able to gain control of a food source that competitors had discovered and identified with scent markings.

“These bees (Trigona spinipes) are so aggressive that they attack Africanized honey bees—popularly known as killer bees—and even attack several species of birds, driving them off flowers,” says Nieh. “In our study, we observed that when they took over the food source from the victim species (Melipona rufiventris) they used a range of forms of aggression from threats to intense grappling followed by decapitation.”

In their experiments, the researchers trained bees of each species to feed at separate dishes of unscented sugar water more than 100 yards away from each other. On discs of paper, the researchers collected scent markings from bees of each species as they were feeding. Scent markings are glandular secretions from bees’ heads or other body parts that many bee species use to indicate a food source. The researchers then covered the original feeder of either the aggressor or victim species and put out dummy feeders at a new location with paper marked by bees of their own species, paper marked by the other species, or unmarked paper. Bees of both species were able to distinguish their kin’s odor marks from the marks of the other species.

“The victim species preferred their own odor marks and avoided those of the aggressor species, but bees of the aggressor species, when searching for a new food source, preferred the odor marks of the victim species to their own odor marks or no odor marks,” says Nieh.

In their paper, the researchers point out that the bees’ responses are adaptive in both cases. The victim species avoids attack by avoiding resources marked by the aggressor species. On the other hand, exploiting the discoveries of other species provides the aggressor species with a steady means to find new rich food sources.

Bees are among a very limited number of species, besides humans, able to abstractly encode information about the physical world into signals understood by receivers. While scientists do not know what kind of communication the two species of bees employ within their hives, Nieh says his team’s finding that they are able to spy on each other’s olfactory markings sheds light on the long-standing mystery of why some other stingless bees and honeybees evolved one of the most sophisticated forms of animal language, strategies that would allow them to inform their kin about distance and direction to a food source while inside the hive.

Funding for this research was provided by the National Science Foundation, the University of California Academic Senate and the Heiligenberg Chair Endowment at UCSD.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sbeespy.asp

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>