Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study probes ecosystem of tree holes

16.06.2004


’It’s a war inside a tree hole’


It’s war inside a tree hole, says WUSTL ecologist Jamie Kneitel. He has studied the effects of three different parameters on the bug-eat-bug world found in the seemingly innocuous, surprisingly revealing, ecosystem.



If you think your place is a dump, try living in a tree hole: a dark flooded crevice with years of accumulated decomposing leaves and bugs, infested with bacteria, other microbes, and crawling with insect larvae.

A biologist at Washington University in St. Louis has studied the ecosystem of the tree hole and the impact that three factors - predation, resources and disturbance -- have on species diversity.


Jamie Kneitel, Ph.D., Washington University in St. Louis post doctoral researcher in biology in Arts & Sciences, and Jonathan Chase, Ph.D., Washington University assistant professor of biology, found that tinkering with any of those factors changes the make up of the community.

Kneitel uses Shakespeare’s Richard the III reference — "subtle, sly and bloody," Richard III’s mother’s description of her son as a little boy — when talking about the ecosystem he studies. A tree hole can be found in nearly every forest and is an ecosystem surprisingly overlooked by ecologists.

Created by a lost tree branch or deformed trunk, the tree hole collects water, which supports an aquatic community that lets an ecologist like Kneitel address fundamental ecological questions. In this small ecosystem, bugs and leaves fall into this pool of water and decompose, which provides the energy for hundreds of species, including bacteria, protozoa, and mosquito larvae. It’s a generally thriving community where these critters battle each other in a mini-survival-of-the-fittest.

To perform his study, Kneitel recreated the tree hole ecosystem in the laboratory, which allowed him to change the parameters to create different ecological situations. The most common disturbance for a tree hole is lack of water. Resources equate to the food supply, and predation among the three basic organisms - protozoans, rotifers and mosquito larvae - is rampant, and varies depending on resources and disturbance.

"Predators, resources, and disturbances are the most common factors that affect communities, but few studies look at all these factors together," Kneitel said. "Not surprisingly, predators, resources, and disturbances all had really strong effects, but the interesting finding was how these various factors interacted. Community composition was altered by all treatments, depending on which treatments were present. Certain species were associated with each of the treatments - those in predator treatments were those tolerant of predators, those in disturbance treatments were tolerant of disturbances, and so on."

The results will be published in a forthcoming isue of Ecology. The research was supported by the National Science Foundation.

Kneitel studied between 20 and 25 protozoan species and four rotifers; protozoans are single-celled organisms, rotifers, multi-celled, yet some protozoans are bigger than rotifers and will prey upon them. Mosquito larvae browse and filter-feed and will attack either of the groups of species.

’It’s war inside a tree hole," Kneitel said. "We found that predation has the strongest effect when there are no disturbances. Disturbance has the strongest effect when there is little predation. When there is no disturbance or predation, competition is the primary source of extinction. A disturbance — a dry tree hole — pretty much kills everything but certain protozoans that can go dormant and survive the cycle."

Kneitel said most studies of this sort look at two factors, compared with the three he and Chase studied.

"Our results show that if you change any one of the three factors, you alter the face of the community," Kneitel said. "We found that we had a group of species that were good competitors, another that is good at tolerating predators, and yet another that can survive and tolerate disturbances.

"These trait (niche) differences allow many species to coexist with one another at different spatial scales. This is true for this community, but also many other communities work in this way."

Kneitel said the scale of the tree hole system allows him to ask "big picture" questions of ecosystems that can’t be asked on a large scale.

"You can’t really ask these types of questions using long-lived organisms like wolf and deer populations," he said. "It takes years and years to see the effects of predation and disturbance on population dynamics. With these communities, you can do an experiment in a month."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/891.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>