Olfactory system matures in different stages

Full development of the sense of smell in mammals is dependent on functional activity during critical periods in development, according to a study by researchers at Yale, Rockefeller and Columbia Universities and published in the journal, Science.

In mammals, the connection between odor and the brain occurs over a single nerve connection. The olfactory sensory neurons (OSNs) that have the same odorant receptor (OR) are directed to regions of the olfactory bulb, where they coalesce into a single structure, a glomerulus. This process is molecularly determined, but it remains controversial to what extent the process also relies on stimulation from the outside.

The visual system, it is known, develops initially without any functional activity, but is later refined and polished through sensory activity. Charles Greer, professor of neurosurgery at Yale, and his collaborators. examined the postnatal formation of glomeruli in odor receptors M71 and M72 in gene-targeted mice during development to determine whether the same development process is found in the olfactory system.

The results of the study established four principles of olfactory system development — without sensory activity there is no full maturation; there is a sensitive period during which activity influences the maturation of the organization; sensitive periods occur at different times for different olfactory receptors; and glomeruli may be innervated by more than one kind of sensory nerve during early development.

The lead author on the paper was Dong-Jing Zou of Columbia. Co-authors included Paul Feinstein and Peter Mombaerts of Rockefeller University; Aimee Rivers, Glennis Matthews, Ann Kim and Stuart Feinstein, from Columbia.

Citation: Science, (Sciencexpress): pp 1-10 (June 3, 2004)

Media Contact

Jacqueline Weaver EurekAlert!

More Information:

http://www.yale.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors