Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover molecular target for treatment of T cell acute lymphoblastic leukemia

15.06.2004


A new research study published in the June issue of Cancer Cell identifies the molecular events that contribute to a notoriously treatment-resistant form of T cell leukemia.



The findings reveal that disruption of immune cell differentiation is central to disease progression and provide new avenues for development of future therapeutics.

T cell acute lymphoblastic leukemia (T-ALL) accounts for 10%-15% of pediatric and 25% of adult ALL cases. A gene called TAL1/SCL is frequently activated in T-ALL patients, but exactly how it causes leukemia has not been clear.


Dr. Michelle Kelliher, from the Department of Cancer Biology at the University of Massachusetts Medical School in Worcester, Massachusetts, and colleagues examined how the TAL1/SCL protein contributes to leukemia.

The researchers demonstrate that TAL1/SCL induces leukemia by interfering with a protein called E47/HEB that regulates the expression of many different genes required for immune cell differentiation and survival.

When these genes were experimentally inhibited by TAL1/SC1 in mice, the mice exhibited abnormal immune (T cell) development, and most eventually developed leukemia.

The researchers also showed that TAL1/SCL silences gene expression by recruiting a histone deacetylase (HDAC) repressor complex, and in fact, HDAC inhibitors were very effective at inhibiting the growth of TAL1/SCL tumor cells.

"Our work demonstrates that TAL1/SCL induces leukemia by repressing E47/HEB activity, and suggests that HDAC inhibitors may prove efficacious in T-ALL patients who express TAL1/SCL. This is an important discovery, as these particular patients respond poorly to current chemotherapies and are at high risk for treatment failure," says Dr. Kelliher.


Jennifer O’Neil, Jennifer Shank, Nicole Cusson, Cornelius Murre, and Michelle Kelliher: "TAL-1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB"

Published in Cancer Cell, Volume 5, Number 6, June 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>