Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT technology jump-starts human embryonic stem cell work


An MIT team has developed new technology that could jump-start scientists’ ability to create specific cell types from human embryonic stem cells, a feat with implications for developing replacement organs and a variety of other tissue engineering applications.

The scientists have already identified a simple method for producing substantially pure populations of epithelial-like cells from human embryonic stem cells. Epithelial cells could be useful in making synthetic skin.

Human embryonic stem cells (hES) have the potential to differentiate into a variety of specialized cells, but coaxing them to do so is difficult. Several factors are known to influence their behavior. One of them is the material the cells grow upon outside the body, which is the focus of the current work.

"Until now there has been no quick, easy way to assess how a given material will affect cell behavior," said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering. Langer is the senior author of a paper on the work that will appear in the June 13 online issue of Nature Biotechnology.

The new technique is not only fast; it also allows scientists to test hundreds to thousands of different materials at the same time. The trick? "We miniaturize the process," said Daniel G. Anderson, first author of the paper and a research associate in the Department of Chemical Engineering. Anderson and Langer are coauthors with Shulamit Levenberg, also a chemical engineering research associate.

The team developed robotic technology to deposit more than 1,700 spots of biomaterial (roughly 500 different materials in triplicate) on a glass slide measuring only 25 millimeters wide by 75 long. Twenty such slides, or microarrays, can be made in a single day. Exposure to ultraviolet light polymerizes the biomaterials, making each spot rigid and thus making the microarray ready for "seeding" with hES or other cells. (In the current work, the team seeded some arrays with hES and some with embryonic muscle cells.)

Each seeded microarray can then be placed in a different solution, including such things as growth factors, to incubate. "We can simultaneously process several microarrays under a variety of conditions," Anderson said.

Another plus: the microarrays work with a minimal number of cells, growth factors and other media. "That’s especially important for human embryonic stem cells because the cells are hard to grow, and the media necessary for their growth are expensive," Anderson said. Many of the media related to testing the cells, such as antibodies, are also expensive.

In the current work, the scientists used an initial screening to find especially promising biomaterials for the differentiation of hES into epithelial cells. Additional experiments identified "a host of unexpected materials effects that offer new levels of control over hES cell behavior," the team writes, demonstrating the power of quick, easy screenings.

This work was funded by the National Science Foundation and the National Institutes of Health.

Elizabeth Thomson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>