Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT technology jump-starts human embryonic stem cell work

14.06.2004


An MIT team has developed new technology that could jump-start scientists’ ability to create specific cell types from human embryonic stem cells, a feat with implications for developing replacement organs and a variety of other tissue engineering applications.



The scientists have already identified a simple method for producing substantially pure populations of epithelial-like cells from human embryonic stem cells. Epithelial cells could be useful in making synthetic skin.

Human embryonic stem cells (hES) have the potential to differentiate into a variety of specialized cells, but coaxing them to do so is difficult. Several factors are known to influence their behavior. One of them is the material the cells grow upon outside the body, which is the focus of the current work.


"Until now there has been no quick, easy way to assess how a given material will affect cell behavior," said Robert Langer, the Germeshausen Professor of Chemical and Biomedical Engineering. Langer is the senior author of a paper on the work that will appear in the June 13 online issue of Nature Biotechnology.

The new technique is not only fast; it also allows scientists to test hundreds to thousands of different materials at the same time. The trick? "We miniaturize the process," said Daniel G. Anderson, first author of the paper and a research associate in the Department of Chemical Engineering. Anderson and Langer are coauthors with Shulamit Levenberg, also a chemical engineering research associate.

The team developed robotic technology to deposit more than 1,700 spots of biomaterial (roughly 500 different materials in triplicate) on a glass slide measuring only 25 millimeters wide by 75 long. Twenty such slides, or microarrays, can be made in a single day. Exposure to ultraviolet light polymerizes the biomaterials, making each spot rigid and thus making the microarray ready for "seeding" with hES or other cells. (In the current work, the team seeded some arrays with hES and some with embryonic muscle cells.)

Each seeded microarray can then be placed in a different solution, including such things as growth factors, to incubate. "We can simultaneously process several microarrays under a variety of conditions," Anderson said.

Another plus: the microarrays work with a minimal number of cells, growth factors and other media. "That’s especially important for human embryonic stem cells because the cells are hard to grow, and the media necessary for their growth are expensive," Anderson said. Many of the media related to testing the cells, such as antibodies, are also expensive.

In the current work, the scientists used an initial screening to find especially promising biomaterials for the differentiation of hES into epithelial cells. Additional experiments identified "a host of unexpected materials effects that offer new levels of control over hES cell behavior," the team writes, demonstrating the power of quick, easy screenings.


This work was funded by the National Science Foundation and the National Institutes of Health.

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>