Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earstones Tell Fishes’ Tale of Early Life in the Colorado River Estuary

09.06.2004


Cross-section of the earstone, or otolith, from a totoaba shows the annual rings that researchers use to learn about the fish’s history.


Adult totoaba otolith collected from an Indian midden. Specimen courtesy of Scripps Institute of Oceanography, La Jolla, Calif.


During their tender youth, both the endangered fish species totoaba and the commercially important gulf corvina require the brackish water habitat provided by the shrinking Colorado River estuary, report researchers.

Although overfishing has been implicated in the decline of both species, commercial harvesting isn’t the only reason for the two species’ decline, the finding suggests. Since 1960, diversion of Colorado River water for human uses has greatly reduced the amount of fresh water that reaches the Gulf of California, thereby reducing the brackish-water estuary, the region where river water and ocean water mix.

"It’s the first time that we’ve been able to substantiate that these fish are using Colorado River water," said Kirsten Rowell, the aquatic biologist who led the research team. "We provide evidence that both of these fish need brackish water in their youth, but today the northernmost part of the Gulf of California is more saline than the open ocean."



Rowell, a doctoral candidate in the department of geosciences at the University of Arizona in Tucson, used fish earstones, or otoliths, to decipher where the fish lived during their babyhood.

The chemistry of the almond-sized otoliths documents what type of water the fish lived in during various times in their lives. Otoliths act like the fish version of a flight recorder.

"You are what you swim in," she said, adding "Otoliths are great data loggers."

The team’s research shows that when they’re young’uns, the fish prefer the brackish water provided by the mixing of fresh and ocean water in the estuary at the mouth of the Colorado.

Team member Karl W. Flessa said, "There are two sources of human impact on these species: one is the direct effect of overfishing; the other is the indirect effect of freshwater diversion." Flessa, a professor in UA’s department of geosciences, said, "We don’t doubt that overfishing is or has been a threat to these species. We’re saying that changes to the nursery area are also a threat to these species."

Rowell will present the team’s research at the Gulf of California conference held June 13-16 at the Westward Look Resort in Tucson, Ariz. Her presentation, "Isotopic Logs from the Sea of Cortez: Environmental and Life History Records From Totoaba and Gulf Corvina Otoliths " will be given at 4 p.m. on Monday, June 14, in Colorado River Delta Session. Her coauthors are Flessa and David Dettman, a research scientist in UA’s department of geosciences.

The research was funded in part by the National Science Foundation, the Southern Arizona Environmental Management Society, the Chevron Research Fund and T&E, Inc.

Totoaba macdonaldi was the first commercially important fish in the northern Gulf of California. The fish can live 20-something years and grow to six feet in length. "San Felipe used to be just an ephemeral fishing village for totoaba," Rowell said. "They used to ship them overland to San Francisco and San Diego. It was the first time they tried to use refrigerated cars."

The commercial totoaba fishery crashed in 1975. Overfishing has been blamed for totoaba’s decline. The fish was listed by the United States as federally endangered in 1979. The current size of the totoaba population is unknown.

Gulf corvina, Cynoscion othonopterus, are still fished commercially, although the American Fisheries Society, the professional society of fisheries biologists, has recently identified the species as "vulnerable," because of habitat changes in the fish’s nursery area and heavy fishing pressure in fish’s spawning site.

Estuaries, zones where fresh river water and salty ocean water mix to form brackish water, are known to be nursery areas for many species of marine life, including many fishes.

Both totoaba and gulf corvina spawn in the mouth of the Colorado, according to fishermen’s reports. Rowell wondered whether otoliths from totoaba and gulf corvina could be used to document the fishes’ use of the Colorado River estuary as nursery.

Getting gulf corvina otoliths was fairly easy -- Rowell took them from four fish bought at the market in El Golfo de Santa Clara, Mexico, the little fishing village at the mouth of the Colorado.

Obtaining totoaba otoliths was trickier. Scripps Institute of Oceanography in La Jolla, Calif., loaned Rowell four 1,000-year-old totoaba otoliths that had been collected from an Indian archaeological site near San Felipe, Baja, Mexico.

Otoliths grow in layers, one layer per year of life. Rowell used a dental drill to grind off bits of otolith one layer at a time.

She then analyzed each layer for different forms of oxygen, called isotopes, to see where the fish lived each year of its life. Fresh water has relatively more of the lighter form of oxygen, oxygen-16, so layers with more oxygen-16 represented years that the fish had spent in brackish water. If the layer had more of the other form, oxygen-18, that meant the fish spent that year in the saline ocean water.

Rowell found that the corvina had spent part of their first year of life in brackish water in the mouth of the river, and the totoaba had spent up to their first three years in brackish water.

She said, "It shows these fish chose the brackish water habitat -- and we’ve taken it away."

"The totoaba are endangered for two reasons," she said. "The primary reason is being overfished. The second reason is that their nursery grounds have shrunk drastically. The Colorado River no longer makes it down to the Gulf except in flood years." She added, "My data say that before the dams, totoaba lived in a brackish water estuary for several years."

Rowell said, "Freshwater rivers are part of a larger system -- they don’t just stop at the edge of the continents. Rivers have a large influence on coastal marine ecosystems. These economically important marine fish were affected when we turned off the water upstream."

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/5/wa/SRStoryDetails?ArticleID=9292

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>