Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choice of food helps hungry caterpillar

08.06.2004


For one caterpillar, eating an unusual fruit may be the key to an easy food supply and protection against parasites, according to a team of Penn State researchers.


Heliothis subflexa caterpillar on partially eaten fruit inside Physalis angulata calyx.
Credit: Penn State, Andrew Sourakov and Consuelo M. De Moraes


Predatory wasp, Cardiochiles nigriceps on branch of Physalis angulata. Heliothis subflexa caterpillar on partially eaten fruit inside Physalis angulata calyx hangs below branch.
Credit: Penn State, Andrew Sourakov and Consuelo M. De Moraes



The Heliothis subflexa caterpillar is a specialist herbivore that eats only the fruit of Physalis plants which include ground cherry, tomatillo and Chinese lantern. H. subflexa’s choice of food turns out to have unusual benefits in the three-way struggle between herbivores, their predatory wasps and the plants.

"We know that many plants produce volatile chemicals when chewed on by herbivores and that some of these chemicals attract wasps that parasitize the caterpillars," says Dr. Consuelo M De Moraes, assistant professor of entomology. "However, when we investigated H. subflexa’s spit, it did not contain volicitin, a chemical elicitor that signals the plant to produce the volatile chemicals that attract wasps."


H. subflexa somehow does not turn on the plant’s defenses.

"The co-evolution of plants, herbivores and their parasitoids is complex," says Dr. Mark C. Mescher, assistant professor of biology. "We do not fully understand how the system is influenced by the interactions of the three players and we need to understand this to develop more environmentally friendly ways to deal with agricultural products and pests."


Thinking the absence of elicitor was related to the caterpillar’s food, the researchers fed H. subflexa on a different food source and fed a different caterpillar on Physalis angulata. The Physalis-fed caterpillar did not produce the elicitor either, but H. subflexa, fed on a different food, did produce elicitors.

The researchers report in this week’s online edition of the Proceedings of the National Academy of Sciences that the Physalis angulata fruits used "lack linolenic acid." Linolenic acid is necessary to produce the chemical in caterpillar spit that elicits the production of volatile wasp attracting substances.

Linolenic acid, however, is not just used to make the elicitor, but is a necessary chemical in the growth and maturation of many insects including other caterpillars and wasps.

"Physiologically, we do not know how the caterpillars manage to survive without it in their diet," says Mescher. "It is a process of specialization and we plan to look at this next."

The absence of linolenic acid explains why H. subflexa is the only caterpillar that feeds on Physalis. Other caterpillars forced to feed on the fruit rarely survived and those that did were often deformed. By somehow adapting to the lack of linolenic acid, H. subflexa manages to secure a food supply that only they can eat.

Physalis is characterized by a fruit enclosed in an inflated calyx, forming the Chinese lantern or husk tomato type of fruit. The caterpillar carefully bores a small hole in the calyx because, unlike the fruit, the leaves and flowers of the plant do produce linolenic acid. Caterpillars will often squeeze out of the same hole, even though they have grown.

"A caterpillar will eat three or four fruits during its lifetime," says De Moraes. "Because they are protected by the calyx when feeding, the caterpillars are most likely to be parasitized when moving from one fruit to another."

The absence of linolenic acid in the fruit appears to be passed on to caterpillar. Wasp larvae cannot develop within the caterpillar and so H. subflexa avoids becoming a home for wasp larvae.

The researchers note that the ability of H. subflexa larvae to develop without linolenic acid seems to give them almost exclusive access to Physalis fruit. H. subflexa can also exploit the protection from predators provided by the fruit’s calyx. Combining that protection with the protection afforded by an absence of linolenic acid for parasite development, H. subflexa has a very low level of parasites compared with other caterpillars.

By adapting to a fruit that no other caterpillar wants, H. subflexa has found a niche where life is good. An uncontested food supply, a way to eat the fruit without calling up the plant’s defenses and immunity to parasites make for successful caterpillars.


This work was supported by the National Research Institute of the U.S. Department of Agriculture, the Beckman Foundation, and a David and Lucille Packard Young Investigator Award.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>