Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Worm Provides Insights Into Salmonella Virulence

08.06.2004


Using a common worm as a model, researchers from Duke University Medical Center have identified specific genes within Salmonella that give the bacteria its ability to infect host cells.


Alejandro Aballay, Ph.D.
CREDIT: Duke University Medical Center



They said their findings could ultimately lead to improved drugs to prevent or treat Salmonella infections.

The researchers found four genes related to the Salmonella’s "molecular syringe" that are required for the bacteria to have maximum potency in infecting the worm, known as Caenorhabditis elegans. The virulence factors -- injected into the host cells by Salmonella -- act by blunting the innate immune system of C. elegans from attacking and destroying the infecting bacteria.


These findings are important, the researchers said, because the C. elegans innate immune response to Salmonella infection is quite similar to that of mammals, including humans. For this reason, the researchers said that their C elegans model can provide new genetic insights into the relationships between invading microbes and their target host cells.

The results of the Duke experiments were published June 8, 2004, in the journal Current Biology. The research was supported by the National Institutes of Health and the Whitehead Institute for Biomedical Research.

"C elegans lives in the soil, so it continually comes into contact with bacteria and other microbes," said lead researcher microbiologist Alejandro Aballay, Ph.D. "It has a highly developed system for not only recognizing bacteria, but also responding to them. The ability of its innate immune system to respond appropriately to specific bacteria is very similar to that of mammals.

"The goal of our research is not only to better understand what makes a particular pathogen harmful for the host, but to determine those characteristics of the host that either make it resistant or susceptible to the pathogen," Aballay added. "To be successful in this type of research, one cannot just focus on the pathogen; the relationship between the pathogen and host is so important."

C elegans is an ideal model for genetic studies, Aballay said, because the worm takes only three days to develop from an embryo to an adult capable of reproducing. Also, scientists can easily manipulate specific genes in the worm, and as opposed to other animal models, large quantities of the animals can be grown quickly. They can even be frozen and used at a later date, Aballay said.

Additionally, the worm is essentially a long intestinal tract, which is also advantageous as a model for Salmonella virulence, since a primary target of Salmonella infections in mammals is the intestine. Aballay said this may be the reason of the remarkable overlap between Salmonella virulence factors required for pathogenesis in mammals and worms.

For their experiments, the team used the C. elegans-Salmonella enterica model developed by Aballay. Specifically, the researchers examined one of the bacteria’s five known "pathogenecity islands," or clusters of genes that have accumulated in S. enterica bacteria through time. These genes have been acquired by the bacteria through the course of evolution as a way of adapting and improving its chances of successfully infecting its hosts, Aballay explained.

"In this study we have related several genes located in pathogenicity islands to S. enterica pathogenesis in worms," Aballay said.

Within the pathogencity island 1 is the "molecular syringe," known as the Type III secretion system (TTSS). This TTSS punctures the cell wall of the host and injects the virulence factors inside. One of the specific virulence factors injected into the host cells through the TTSS, termed SptP, was critical for the Salmonella’s ability to kill C. elegans.

"While there are at least 13 effector proteins, or virulence factors, which are injected into the host through the TTSS, our studies have shown that a single protein (SptP) can have a major impact on an entire animal," Aballay explained. "What this factor does is diminish the animal’s ability to mount an effective immune response."

Aballay believes that this model opens news areas of research for better understanding the relationship between pathogens and host responses.

"While many virulence factors have been identified, the mechanisms by which they contribute to bacterial pathogenesis remain unknown," he said. "But with the identification of the targeted pathways in the host, we should be able to figure out how virulence factors influence the innate immune response."

Aballay said that the C elegans system could be an effective living model for testing or screening new compounds or drugs for treating Salmonella in humans. However, he added, much additional research in other living models is necessary before these new insights can be applied to human disease.

Using the C elegans model, Aballay and his colleagues are now conducting genetic screens to find genetic variants called polymorphisms in the host that appear to confer either resistance or susceptibility to Salmonella. The researchers expect that these polymorphisms would also play a role in human disease.

Other members of the research team were Duke’s Jennifer Tenor, as well as Beth McCormick, Ph.D., and Frederick Ausubel, Ph.D., of Harvard Medical School, Boston.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7647

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>