Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon U biologists identify critical player in yeast ribosome assembly

08.06.2004


Carnegie Mellon University biologists are the first to show that minor changes in the tail of one protein cripple yeast’s ability to assemble protein-making machines called ribosomes. The findings, published in a recent issue of Molecular Cell, ultimately could help scientists develop better drugs to fight fungal infections.



"Our findings are the first to link the structure of a ribosomal protein to a critical step in the pathway to assembling a fully functional ribosome," explained John Woolford, professor of biological sciences at the Mellon College of Science at Carnegie Mellon. "Understanding the molecular basis of ribosome assembly offers a rational scheme for designing drugs to interfere with that process."

A complex of protein and ribonucleic acid (RNA), ribosomes are present in vast quantities inside every cell. There, they translate genetic information into proteins that control many activities, including cell movement, metabolism, division and response to the environment. Because ribosomes are essential for protein production, problems with their assembly inevitably spell cell death.


Woolford found that changing the tail of a ribosomal protein called S14 prevented it from processing a chunk of RNA destined to become part of a mature ribosome. Drugs that target the tail of S14 would likely interfere with ribosome assembly, according to Woolford, who added that such agents would destroy an infectious fungus while leaving animal or plant cells unharmed.

Using processes known as transformation and gene disruption, Woolford’s group engineered the yeast Saccharomyces cerevisiae, (common baker’s yeast) to contain two genes for S14. One normal, or wild-type, gene instructed production of a fully functional S14 protein, while a mutant gene coded for the production of an S14 with an altered tail. After growing the yeast under normal conditions, Woolford turned off the wild-type gene and observed the consequences when only the mutant gene worked. He found that a slightly altered tail structure prevented the S14 protein from "cutting" its target RNA molecule, thus halting ribosome assembly. Because it wasn’t processed, this typically short-lived RNA molecular intermediate accumulated within yeast cells, making it easy to isolate and study. Yeast engineered with mutations in genes for other proteins that direct ribosome assembly should yield even more intermediates for study, according to Woolford, whose research was supported by the National Institutes of Health and reported in the May 7 issue of Molecular Cell.

In collaboration with Martin Farach-Colton at Rutgers University, Woolford is currently developing computer models to outline the many proteins involved in ribosome assembly and the step-by-step process by which various parts come together to make a new ribosome. In addition, Woolford is carrying out genetic experiments to test their idea that certain non-ribosomal proteins that regulate ribosome assembly (called ribosomal assembly factors) also regulate cell proliferation.

"We think that specific ribosome assembly factors we discovered might have a second ’moonlighting’ job," said Woolford. "Thus, if such a protein functions in both ribosome assembly and growth regulation, cells could coordinate these two processes by ’talking’ to the same molecule in two places."

In this scenario, if a cell told a ribosome assembly factor to stop working, it would effectively shut down ribosome production and at the same time trigger cells to stop dividing. But if that factor failed to hear what the cell dictated, it would continue to build ribosomes and spur cell division that could lead to cancer, according to Woolford.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>