Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carnegie Mellon U biologists identify critical player in yeast ribosome assembly


Carnegie Mellon University biologists are the first to show that minor changes in the tail of one protein cripple yeast’s ability to assemble protein-making machines called ribosomes. The findings, published in a recent issue of Molecular Cell, ultimately could help scientists develop better drugs to fight fungal infections.

"Our findings are the first to link the structure of a ribosomal protein to a critical step in the pathway to assembling a fully functional ribosome," explained John Woolford, professor of biological sciences at the Mellon College of Science at Carnegie Mellon. "Understanding the molecular basis of ribosome assembly offers a rational scheme for designing drugs to interfere with that process."

A complex of protein and ribonucleic acid (RNA), ribosomes are present in vast quantities inside every cell. There, they translate genetic information into proteins that control many activities, including cell movement, metabolism, division and response to the environment. Because ribosomes are essential for protein production, problems with their assembly inevitably spell cell death.

Woolford found that changing the tail of a ribosomal protein called S14 prevented it from processing a chunk of RNA destined to become part of a mature ribosome. Drugs that target the tail of S14 would likely interfere with ribosome assembly, according to Woolford, who added that such agents would destroy an infectious fungus while leaving animal or plant cells unharmed.

Using processes known as transformation and gene disruption, Woolford’s group engineered the yeast Saccharomyces cerevisiae, (common baker’s yeast) to contain two genes for S14. One normal, or wild-type, gene instructed production of a fully functional S14 protein, while a mutant gene coded for the production of an S14 with an altered tail. After growing the yeast under normal conditions, Woolford turned off the wild-type gene and observed the consequences when only the mutant gene worked. He found that a slightly altered tail structure prevented the S14 protein from "cutting" its target RNA molecule, thus halting ribosome assembly. Because it wasn’t processed, this typically short-lived RNA molecular intermediate accumulated within yeast cells, making it easy to isolate and study. Yeast engineered with mutations in genes for other proteins that direct ribosome assembly should yield even more intermediates for study, according to Woolford, whose research was supported by the National Institutes of Health and reported in the May 7 issue of Molecular Cell.

In collaboration with Martin Farach-Colton at Rutgers University, Woolford is currently developing computer models to outline the many proteins involved in ribosome assembly and the step-by-step process by which various parts come together to make a new ribosome. In addition, Woolford is carrying out genetic experiments to test their idea that certain non-ribosomal proteins that regulate ribosome assembly (called ribosomal assembly factors) also regulate cell proliferation.

"We think that specific ribosome assembly factors we discovered might have a second ’moonlighting’ job," said Woolford. "Thus, if such a protein functions in both ribosome assembly and growth regulation, cells could coordinate these two processes by ’talking’ to the same molecule in two places."

In this scenario, if a cell told a ribosome assembly factor to stop working, it would effectively shut down ribosome production and at the same time trigger cells to stop dividing. But if that factor failed to hear what the cell dictated, it would continue to build ribosomes and spur cell division that could lead to cancer, according to Woolford.

Lauren Ward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>