Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins Transform DNA into "Molecular Velcro"

07.06.2004


Proteins critical for compacting DNA in preparation for cell division actually interact with the double helix to fashion it into a kind of “molecular Velcro,” researchers have discovered.


"When we began to pull it apart carefully, we saw it extend in a sawtooth pattern of force, like the click-click-click of Velcro unzipping," said HHMI investigator Carlos Bustamante.
Photo: Barbara Ries



The proteins, called condensins, are important for a variety of housekeeping processes in chromosomes, but the mechanics behind their function have been largely unknown. When the researchers alternately stretched and compressed a single molecule of DNA with condensins attached, they found that the DNA extended in stepwise “clicks,” akin to Velcro unzipping.

The successful manipulation of a single DNA molecule with condensin proteins attached makes it plausible to think about using a similar strategy to explore the machinery that processes chromosomes in the cell, said one of the study’s senior authors, Carlos Bustamante, a Howard Hughes Medical Institute researcher at the University of California, Berkeley.


Bustamante, Ryan B. Case, Nicholas R. Cozzarelli and their colleagues at Berkeley published their findings on June 3, 2004, in Science Express, which provides rapid electronic publication of selected articles from the journal Science.

“Until now, little was known about the function of condensins,” said Bustamante. “It was known that if the gene for the protein was knocked out, chromosomes failed to segregate properly in cell division. One daughter cell might receive all the DNA and the other none.”

Bustamante and his colleagues took note of earlier studies by another group of researchers that provided evidence that condensins appeared to induce “supercoiling” in DNA, which occurs when two helical molecules intertwine.

“We decided to try to develop a single-molecule assay, to see whether we could really understand the mechanism of this protein’s effects on DNA,” said Bustamante. “Even though there was no bulk assay for this protein’s activity, we thought that maybe we would get lucky and observe some activity at a single-molecule level.”

The researchers worked with a type of condensin found in the bacterium E. coli. Their experimental procedure consisted of attaching one end of a DNA molecule to a tiny plastic bead held by suction onto a micropipette. They then caused the DNA molecule to extend by flowing liquid past it, and exposed it to a solution containing the bacterial condensin protein. The researchers next added the energy-containing molecule ATP to the solution. After the ATP was added, they captured the other end of the condensin-treated DNA molecule with another plastic bead and proceeded to pull on the DNA with precisely measured force.

“We found that the DNA molecule had become much shorter in the presence of the condensin protein,” said Bustamante. “And when we began to pull it apart carefully, we saw it extend in a sawtooth pattern of force, like the click-click-click of Velcro unzipping.

“When we pulled again a second time, much to our surprise, the process reproduced identically every tooth in the sawtooth pattern. We had never seen anything like that. We really thought that we were only seeing noise in the stretching of the DNA, but instead we were seeing a perfect registry in the sawtooth pattern,” Bustamante said.

That perfect reproducibility strongly suggested to Bustamante and his colleagues that they were seeing a condensed structure with a well defined organization. “Every time we pulled it out and relaxed it, the molecule was able to return to the same initial or condensed form,” said Bustamante. In fact, the researchers pulled and relaxed the same DNA molecule dozens of times, seeing the same sawtooth pattern of extension and condensation each time.

They also found that the energy-containing ATP molecule appeared to play a regulatory role, rather than providing energy for the condensation reaction. When the researchers removed all excess ATP from the solution, they found that the condensin proteins continued to function. “That finding was a big surprise, because we expected the protein to be more like a motor that had to burn ATP every time it condensed,” said Bustamante. Also, when they removed the excess protein from the solution, the bound protein was able to recondense the DNA when the tension on the DNA was lowered.

The researchers’ analyses led them to propose a model of how the string of condensin proteins interacts to condense the DNA molecule. They theorize that the “heads” of the condensin proteins attach themselves sequentially and tightly to DNA. By attaching in this fashion, each protein “cooperates” with its neighbor, binding itself reversibly to the head of the next protein, thereby scrunching the DNA bit by bit into its condensed state. And when the researchers experimentally stretched the DNA molecule, the condensin heads popped apart sequentially, producing the sawtooth force extension pattern. But the heads remained bound to the DNA, so that when the force is lowered they can go back to their closed state and recondense the DNA molecule.

According to Bustamante, these studies of the bacterial condensin molecule will open the way to future studies of similar proteins that manipulate DNA and maintain chromosomal structure. “The actual mechanism by which these molecules actually carry out their function is unknown,” he said. “And so, we are very excited that we have been able to develop an assay that, for the first time, gives us an understanding of how these molecules may be acting at the molecular level.”

Jim Keeley | HHMI
Further information:
http://www.hhmi.org/news/bustamante3.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>