Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parting Genomes: UA Biologists Discover Seeds of Speciation

07.06.2004


A University of Arizona graduate student may be the first eyewitness to the birth of a new species. Her new findings, appearing in the June 7, 2004 Proceedings of the National Academy of Science, could help biologists identify and understand the precise genetic changes that lead a species to evolve into two separate species.



Laura K. Reed and her advisor, Regents’ Professor Therese Markow, made the discovery by observing breeding patterns of fruitflies that live among rotting cacti in western deserts. Whether the two closely related fruitfly populations, designated Drosophila mojavensis and Drosophila arizonae, represent one species or two is still debatable among biologists, testament to the Arizona researchers’ assertion that they are in the early stages of diverging into separate species.

The seeds of speciation are sown when distinct factions of a species cease reproducing with one another. When the two groups can no longer interbreed, or prefer not to, they stop exchanging genes and eventually go their own evolutionary ways, forming separate species.


While the evolutionary record is brimming with examples of speciation events, Reed says, biologists haven’t been able to put their finger on just what initiates the reproductive isolation. Several researchers have identified mutant forms of certain genes associated with the inability of fruitflies to hybridize with closely related species, but in all cases those genes were discovered long after the two species diverged. Those genetic changes could have caused the speciation or resulted from it, or they might even be incidental changes that occurred long after the species diverged. The difficulty, Reed explains, is that you have to catch the genetic schism while it’s still brewing.

She and her advisor report that they have managed to do just that. In the wild, D. mojavensis and D. arizonae rarely if ever interbreed, even though their ranges overlap along a broad swath along the northern Mexican coastline. In the lab, researchers can coax successful conjugal visits between members of the two groups. But even under laboratory conditions hybrid crosses aren’t always fruitful. D. mojavensis mothers typically produce healthy offspring after mating with D. arizonae males, but when D. arizonae females mate with D. mojavensis males, all of the resulting hybrid sons are sterile. This partial capacity for interbreeding, Reed says, suggests that these flies are on the verge of evolving to become completely separate species.

Another finding adds support to that notion. Researchers had previously reported that for one strain of D. mojavensis, from Catalina Island, off the southern California coast, mothers always produce sterile sons when crossed to D. arizonae males.

Because the hybrid male sterility trait depends on the mother’s genetic heritage, Reed and Markow concluded that the genetic change—polymorphism, in evolutionary biology parlance—responsible for creating sterile sons must not yet be “fixed,” or firmly established in D. mojavensis populations. And that is a telltale sign that the change was recent.

Reed wanted to know just how deeply the polymorphism causing male sterility had suffused Catalina Island D. mojavensis populations. In other words, do all or just some of the Catalina Island mothers produce sterile sons when mated to D. arizonae males? When she did the experiment, she found that only about half the crosses resulted in sterile sons. That result implies that only half the females in the Catalina Island population had the gene (or genes) for hybrid male sterility.

Surprisingly, when she tested D. mojavensis females from other geographic regions, she found that a small fraction of those populations also exhibited the hybrid male sterility polymorphism. “That polymorphism exists in every population I looked at,” Reed said. “It just happens to be that whatever factors are causing sterility are at higher frequencies in the Catalina Island population.”

Further experiments demonstrated that the sterility trait is caused by more than one genetic change. “I think there are many genes—4 or 5 probably, maybe many more,” Reed predicted.

Now that the researchers are hot on the trail of a set of “speciation genes,” their next task will be to identify them. To help toward that endeavor, they plan to take advantage of the newly begun D. mojavensis genome sequencing project, which will provide a complete roadmap of every gene in the species.

Reed reflects upon the implications of the findings. “There’s a huge amount of biodiversity out there, and we don’t know where it comes from. Evolutionary biologists are excited to figure out what causes what we see out there—the relative forces of selection and drift—whether things are adapting to their environment or variation is random.

"Another important component to that is how that variation is partitioned into separate species. Once you’re a separate species, you have an independent evolutionary trajectory to some other species—an independent set of tools, or genetic potential, relative to other species. So this partitioning of genomes is an important cause of the variation we see in nature.”

Paul Muhlrad | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=9269

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>