Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover That Nerve Activity, Not Just Genetics Controls Kinds Of Neurotransmitters Produced

03.06.2004


Photo shows different neurotransmitters in red and purple in normal frog embryos and embryos with decreased and increased nerve activity (from top to bottom) Photo credit: Laura N. Borodinsky, UCSD


Neurobiologists at the University of California, San Diego have discovered that altering electrical activity in nerve cells can change the chemical messengers the cells generate to communicate with other cells, a finding that may one day lead to new treatments for mood and learning disorders.

In a study published in the June 3rd issue of the journal Nature, a team led by UCSD professor of biology Nicholas Spitzer shows that manipulating the electrical activity of developing nerve cells can alter the type of neurotransmitter—chemicals that carry information between nerve cells at junctions called “synapses”—they produce. A review paper discussing these results will appear in July in Trends in Neurosciences. The results are important because scientists had long believed that the different kinds of neurotransmitters used by different nerve cells were genetically programmed into the cell.

"If you were to ask neuroscientists what learning is in cellular and molecular terms, none would have said it is the changing identity of neurotransmitters,” says Spitzer. “That would have been heresy because everyone thought neurotransmitter identity was genetically programmed. Our results show that by altering neural activity, you can change the identity of the neurotransmitter a particular cell produces, raising the possibility that disorders caused by problems with neurotransmitters could be treated by modifying neural activity.”



In the study, the UCSD group increased or decreased the electrical activity in frog embryonic spinal nerve cells by altering the current through nerve cell membranes with drugs or by genetic manipulation. They found that increases in activity increased the levels of neurotransmitters that inhibit the activity of nerve cells across the synapse and decreased the levels of neurotransmitters that stimulate nerve cells. Decreasing electrical activity had the opposite effect.

These results led the researchers to propose that while genes control the formation of structures that produce electrical activity in nerve cells, the activity itself can determine what neurotransmitters are produced. According to Spitzer, this could provide flexibility for the growth and operation of the nervous system.

“Biology is a little sloppy,” explains Spitzer. “A nerve cell may need to grow to the other side of the developing brain and form a synapse there. Genes can do a lot to specify where to grow, but precision is not absolute. So instead of genes specifying everything, activity can play a role by fine tuning what neurotransmitters are expressed when the nerve cell finds its target.”

It is not yet clear how activity affects neurotransmitters in the adult nervous system, but Spitzer thinks there is a good chance activity will play a similar role there as well.

“Often the processes we see in the embryonic nervous system we also see in the adult, albeit in a much more muted way,” he says.

If so, these findings could open new avenues for treating mental illnesses like depression, phobias, schizophrenia and bipolar disorder, which together affect 20 percent of the U.S. population each year, with estimated cost of treatment and lost productivity totaling approximately $150 billion, according to the U.S. Surgeon General.

“Focal stimulation of the brain to elicit changes in neurotransmitter production could have advantages over current drug treatments and electroconvulsive therapy—stimulation of the whole brain with electric current,” notes Spitzer. “These treatments work for many patients, but both treat the entire brain in an imprecise way and have side effects.”

The first author on the paper, Laura Borodinsky, a postdoctoral fellow in Spitzer’s laboratory, is now studying how the cells across the synapse receiving the neurotransmitter change in response to being exposed to a different neurotransmitter. Using changes in activity to treat neural disorders would depend on the ability of these cells to respond appropriately to the new neurotransmitter. Further research is also needed, the UCSD scientists say, to determine if the 50 to 100 other known neurotransmitters are also regulated by activity.

Other UCSD contributors to the publication were Cory Root, Julia Cronin, Sharon Sann and Xiaonan Gu. The study was supported by the National Institutes of Health, National Science Foundation and Merck.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Nicholas Spitzer (858) 534-2456

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sactivity.asp

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>