Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover That Nerve Activity, Not Just Genetics Controls Kinds Of Neurotransmitters Produced

03.06.2004


Photo shows different neurotransmitters in red and purple in normal frog embryos and embryos with decreased and increased nerve activity (from top to bottom) Photo credit: Laura N. Borodinsky, UCSD


Neurobiologists at the University of California, San Diego have discovered that altering electrical activity in nerve cells can change the chemical messengers the cells generate to communicate with other cells, a finding that may one day lead to new treatments for mood and learning disorders.

In a study published in the June 3rd issue of the journal Nature, a team led by UCSD professor of biology Nicholas Spitzer shows that manipulating the electrical activity of developing nerve cells can alter the type of neurotransmitter—chemicals that carry information between nerve cells at junctions called “synapses”—they produce. A review paper discussing these results will appear in July in Trends in Neurosciences. The results are important because scientists had long believed that the different kinds of neurotransmitters used by different nerve cells were genetically programmed into the cell.

"If you were to ask neuroscientists what learning is in cellular and molecular terms, none would have said it is the changing identity of neurotransmitters,” says Spitzer. “That would have been heresy because everyone thought neurotransmitter identity was genetically programmed. Our results show that by altering neural activity, you can change the identity of the neurotransmitter a particular cell produces, raising the possibility that disorders caused by problems with neurotransmitters could be treated by modifying neural activity.”



In the study, the UCSD group increased or decreased the electrical activity in frog embryonic spinal nerve cells by altering the current through nerve cell membranes with drugs or by genetic manipulation. They found that increases in activity increased the levels of neurotransmitters that inhibit the activity of nerve cells across the synapse and decreased the levels of neurotransmitters that stimulate nerve cells. Decreasing electrical activity had the opposite effect.

These results led the researchers to propose that while genes control the formation of structures that produce electrical activity in nerve cells, the activity itself can determine what neurotransmitters are produced. According to Spitzer, this could provide flexibility for the growth and operation of the nervous system.

“Biology is a little sloppy,” explains Spitzer. “A nerve cell may need to grow to the other side of the developing brain and form a synapse there. Genes can do a lot to specify where to grow, but precision is not absolute. So instead of genes specifying everything, activity can play a role by fine tuning what neurotransmitters are expressed when the nerve cell finds its target.”

It is not yet clear how activity affects neurotransmitters in the adult nervous system, but Spitzer thinks there is a good chance activity will play a similar role there as well.

“Often the processes we see in the embryonic nervous system we also see in the adult, albeit in a much more muted way,” he says.

If so, these findings could open new avenues for treating mental illnesses like depression, phobias, schizophrenia and bipolar disorder, which together affect 20 percent of the U.S. population each year, with estimated cost of treatment and lost productivity totaling approximately $150 billion, according to the U.S. Surgeon General.

“Focal stimulation of the brain to elicit changes in neurotransmitter production could have advantages over current drug treatments and electroconvulsive therapy—stimulation of the whole brain with electric current,” notes Spitzer. “These treatments work for many patients, but both treat the entire brain in an imprecise way and have side effects.”

The first author on the paper, Laura Borodinsky, a postdoctoral fellow in Spitzer’s laboratory, is now studying how the cells across the synapse receiving the neurotransmitter change in response to being exposed to a different neurotransmitter. Using changes in activity to treat neural disorders would depend on the ability of these cells to respond appropriately to the new neurotransmitter. Further research is also needed, the UCSD scientists say, to determine if the 50 to 100 other known neurotransmitters are also regulated by activity.

Other UCSD contributors to the publication were Cory Root, Julia Cronin, Sharon Sann and Xiaonan Gu. The study was supported by the National Institutes of Health, National Science Foundation and Merck.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Nicholas Spitzer (858) 534-2456

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sactivity.asp

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>