Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Study Shows How We Perceive World Depends On Precise Division Of Labor Among Cells In Brain

03.06.2004


University of California, San Diego neurobiologists have uncovered evidence that sheds light on the long-standing mystery of how the brain makes sense of the information contained in electrical impulses sent to it by millions of neurons from the body.


Image shows individual specialized brain neurons in different colors with brain slice in the background
Photo credit: Massimo Scanziani and Frédéric Pouille, UCSD



In a paper published this week in the early on-line version of the journal Nature, a UCSD team led by Massimo Scanziani explains how neurons, or nerve cells, in the brain sort out information before deciding how to respond. The paper will appear in a forthcoming print issue of Nature.

Light, sound and odors, for example, are transformed by our sensory organs into a code made of series of electrical impulses that travel along neurons from the body to the brain. Information about the onset and the intensity of a stimulus is thought to be sent to the brain by the timing and frequency of these electrical impulses. How information is sorted by the brain has been an open question. The group discovered that different neurons in the brain are dedicated to respond to specific portions of the information.


“Our work shows that deciphering the enormous amount of information that is conveyed to the brain at any time-point is a matter of division of labor between specialized neurons,” explains Scanziani, an assistant professor of biology. “Each neuron literally ’picks’ the type information it is supposed to process, that it is competent for. Very much like each musician in an orchestra only reads that part of the score of a symphony that was written for his or her own instrument.”

Because they needed to see and record electrical impulses from individual nerve cells, the researchers used slices of rat brain, which when bathed in an appropriate solution can be kept alive under a microscope. To mimic incoming information, the first author on the paper, Frédéric Pouille, a postdoctoral fellow in Scanziani’s laboratory, provided an electrical stimulus—analogous to the score in Scanziani’s analogy—and then monitored which nerve cell read which part of the information. Pouille and Scanziani found some nerve cells that were only responsive to the first impulse that arrived, while other nerve cells only responded to multiple electrical impulses arriving at certain frequencies.

“While some neurons only responded to the onset of each package of information, which, in other words, means: Hey, something just arrived, other neurons actually looked into the package and played the notes,” says Scanziani.

Each of these specialized brain neurons has a highly branched structure where many neurons carrying sensory information can form connections. At any moment, each of these specialized brain neurons might be receiving multiple messages from multiple sources, but is only selectively responding to certain information about the timing or frequency of the impulses it is receiving.

Why is the timing of information so important? Visual, tactile and auditory information needs to be synchronized. If it were not, then one might, for example, perceive someone’s lips move before hearing the words being spoken—like a badly dubbed foreign film.

The brain also needs to know how intense a stimulus is because intensity will influence what action needs to be taken. For example, an uncomfortable shoe will become more and more difficult to ignore as your foot develops a blister. As the blister develops, the interval between subsequent electrical impulses arriving at the brain would decrease; in other words, their frequency would increase. Scanziani speculates that there might even be an “alarm neuron” in the brain that responds to high frequency electrical impulses by triggering the appropriate muscle response to escape the stimulus.

“This study advances our understanding of how the brain reads a code made of identical electrical impulses, in order to produce a coherent perception of the world,” he says. “Deciphering the language of the brain will help us understand the neuronal basis for sensation and cognition and their associated disorders.”

In their paper, the UCSD researchers also determine a chain of physiological mechanisms working in concert to allow these brain neurons to selectively respond to a specific pattern of incoming electrical impulses. Communication across the connections between neurons is usually chemical rather than electrical. The researchers found that the differences in the way the individual brain neurons released and responded to these chemicals could explain their differing responses to incoming information.

Scanziani and Pouille’s experiments focused on the hippocampus—a region of the brain known to be important in learning in memory. But they believe that other regions of the brain may also use the same principles to sort information. However, the researchers point out that brain slices are a simplified system, and more research is needed before they will understand the finer details of this sorting.

“This is only part of the picture,” cautions Scanziani. “We are not looking at the whole orchestra, maybe only the violins and the oboes. But down the line we plan to look at further classes of nerve cells.”

The research study was initiated when Scanziani was an assistant professor at the Brain Research Institute of the University of Zurich. The work was supported by the National Institutes of Health and the Swiss National Science Foundation.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Massimo Scanziani (858) 822-3839

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sdivlabor.asp

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>