Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SLU scientists have identified the first gene regulating programmed cell death in plant embryos

02.06.2004


A research team at the Swedish University of Agricultural Sciences, SLU, has succeeded in isolating a novel gene that regulates cell death in plant embryos. This is a world first.



The team consists of scientists from the Department of Plant Biology and Forest Genetics, headed by Peter Bozhkov and Sara von Arnold. The team has discovered programmed cell death in plant embryos and has recently identified the first gene that regulates this cell death. This research has been conducted in collaboration with Durham University, England, and the Karolinska Institute, Stockholm.

"This is a tiny, tiny step that we have taken in basic research on plant development. In the long term this may be of significance in plant breeding and in forestry," says Sara von Arnold, professor of forest tree cell biology at SLU.


The scientists hope the new knowledge about how programmed cell death is regulated can be exploited to increase production and bolster resistance in plants.

Programmed cell death is a natural and vital process during the life cycle of multicellular organisms. Among other purposes, it regulates the form of organisms during certain developmental stages and removes superfluous or damaged cells. It could be said that cell death is a kind of suicide that is regulated by a "death gene." This has been studied extensively in animal cells.

The 2002 Nobel laureates in medicine and physiology identified key genes that regulate the development of organs and programmed cell death in worms. These genes are crucial to the functioning of the body. When the balance between production of new cells and cell death is disturbed, diseases like cancer and several neurological disorders arise.

Compared with animal cells, plant cells have developed completely different mechanisms to regulate programmed cell death. With the SLU scientists‚ discovery, recently published in the scientific journal Current Biology, it is now possible to study how these different regulatory mechanisms have evolved in plants and animals.

Authors:

Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B and Bozhkov PV. (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology 14: R339-R340.

Carin Wrange | EurekAlert!
Further information:
http://www.vr.se/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>