Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists block cellular enzyme activity involved in cancer progression

02.06.2004


Scientists at the University of North Carolina at Chapel Hill have found an unexpected way to turn off a cellular enzyme involved in the progression of several types of human cancers.



The enzyme, focal adhesion kinase (FAK), is known to promote cellular movement and survival. Its over-activity promotes cancer cell growth and metastasis. The new study demonstrates for the first time that one segment of FAK called the FERM domain plays a crucial role in activating FAK.

Subtle changes to the FERM domain make FAK activity deficient, the study showed. This discovery raises the possibility that drugs designed to mimic this modification could allow doctors to turn off FAK in cancer patients, UNC researchers said.


The new findings appear in the June 2 issue of the journal Molecular and Cellular Biology. The study’s lead author, Dr. Michael D. Schaller, first isolated FAK in 1992 while searching for proteins involved in transforming normal cells into cancer-like cells. Schaller is associate professor of cell and developmental biology in UNC’s School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center.

"Since FAK was discovered in the context of cancer, there was immediate interest in relating FAK activity to its potential role in the development and progression of tumors," Schaller said.

One way cells sense and respond to their environment is through receptor molecules called integrins, which are located on the cell’s outer surface. FAK relays signals from integrins to other molecules inside the cell that ultimately control the growth, survival and movement of the cell. Because unrestrained growth, survival and motility are hallmarks of tumor cells, the basic biological functions of FAK have implied its involvement in cancer.

Studies continue to connect unregulated FAK activity with malignant cancer, said Schaller. However, no drugs have been developed that are able to specifically inhibit FAK activity.

"If we can figure out the minute details as to how FAK works, then we can determine how to block its activity," Schaller said. "And if we do that, then we might be able to apply what we learn therapeutically against cancer."

To better understand FAK activity, Schaller collaborated with the Structural Bioinformatics Core Facility at UNC to predict the three-dimensional configuration of FAK’s FERM domain.

Computer modeling of the FERM domain predicted a small patch of positively charged amino acids on its surface. These amino acids are conserved in the FAK molecules of organisms as diverse as insects and humans.

Schaller and his colleagues then engineered a mutant FAK molecule devoid of positive charges on that small patch of FERM and found that their mutant protein was nonfunctional. Whereas breast cancer cells responded to increased expression of normal FAK by migrating faster, the mutant FAK was unable to provoke any change in movement from breast cancer cells.

"Our mutant appears to be deficient for turning FAK on and making cells move," Schaller said.

The positively charged region identified in this study seems to cooperate directly with other domains of the molecule, he added.

"Disruption of this interaction might reduce activation of FAK and impair aberrant cell motility or survival conferred by FAK under pathological conditions, such as cancer."


The study was supported by grants from the National Institutes of Health and the U.S. Department of Defense.

By STUART SHUMWAY
UNC School of Medicine

Note: Contact Schaller at (919) 966-0391 or crispy4@med.unc.edu.
School of Medicine contact: Les Lang, (919) 843-9687 or llang@med.unc.edu

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>