Could mice hold the secret to longer life?

Scientists from the University of Aberdeen, the Aberdeen-based Rowett Research Institute and the Medical Research Council (MRC) in Cambridge have made a major breakthrough in understanding how metabolism affects lifespan.

In a seven-year study of mice they found that those with the highest metabolic rate lived the longest, raising the prospect that the effect could be mimicked in humans.

Scientists have long thought that a high metabolic rate was linked to a shortened life-span. The present discovery turns this century old belief on its head and changes dramatically our understanding of the regulation of life-span.

Metabolism is the means by which nutrients are broken down to smaller building blocks and chemical energy, which are used to make new body materials and to do work.

The researchers discovered that the most metabolically active 25% of the mice studied, far from having shorter life-spans, in fact lived 36% longer than the least active. If the same effects are mimicked in humans then the finding would imply that a higher metabolic rate could add an extra 27 years to the average human lifespan.

When the muscles of the most metabolically active mice were examined, they were found to contain factors that increased their metabolism by making it less efficient.

Although the scientists do not yet fully understand how these factors work, it is suspected that while the make the metabolism less efficient, on the positive side they reduce the generation of toxic by-products called “oxygen free radicals”.

Media Contact

Kate Stinchcombe Blackwell Publishing Ltd

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors