Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could mice hold the secret to longer life?

01.06.2004


Scientists from the University of Aberdeen, the Aberdeen-based Rowett Research Institute and the Medical Research Council (MRC) in Cambridge have made a major breakthrough in understanding how metabolism affects lifespan.



In a seven-year study of mice they found that those with the highest metabolic rate lived the longest, raising the prospect that the effect could be mimicked in humans.

Scientists have long thought that a high metabolic rate was linked to a shortened life-span. The present discovery turns this century old belief on its head and changes dramatically our understanding of the regulation of life-span.


Metabolism is the means by which nutrients are broken down to smaller building blocks and chemical energy, which are used to make new body materials and to do work.

The researchers discovered that the most metabolically active 25% of the mice studied, far from having shorter life-spans, in fact lived 36% longer than the least active. If the same effects are mimicked in humans then the finding would imply that a higher metabolic rate could add an extra 27 years to the average human lifespan.

When the muscles of the most metabolically active mice were examined, they were found to contain factors that increased their metabolism by making it less efficient.

Although the scientists do not yet fully understand how these factors work, it is suspected that while the make the metabolism less efficient, on the positive side they reduce the generation of toxic by-products called “oxygen free radicals”.

Kate Stinchcombe | Blackwell Publishing Ltd
Further information:
http://www.blackwell-synergy.com

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>