Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists find a key to cell division

28.05.2004


Discovery may lead to insights into cancer, birth defects, fertility and neurological disorders


CHO cells dividing with isolated midbodies surrounding them. The cells and midbodies are stained with anti-actin (red), anti-tubulin (green) and DAPI (blue). This image shows Chinese hamster ovary cells in the last stages of division. The red outer membrane is complete around each new cell, while the green midbody still remains between them. Isolated midbodies are also pictured in green around the cells to show the organelles in more detail.
Photo by: courtesy Ahna Skop


CHO cells dividing. The cells are stained with anti-actin (red), anti-tubulin (green) and DAPI (blue). This image shows two Chinese hamster ovary cells in the last stages of division. The red outer membrane is complete around each new cell, while the green midbody still remains between them.
Photo by: courtesy Ahna Skop



A cellular structure discovered 125 years ago and dismissed by many biologists as "cellular garbage" has been found to play a key role in the process of cytokinesis, or cell division, one of the most ancient and important of all biological phenomena.
The discovery of the function of the dozens of proteins harbored within this structure - which are necessary for normal cell division - by a team of scientists led by a University of Wisconsin-Madison geneticist was announced in today’s edition of the journal Science.

The discovery promises a better understanding of the role of cell division in the growth and development of all organisms and, critically, of abnormal cell division, when the key proteins fail. These failures can lead to infertility, birth defects, cancer and neurological problems such as Huntington’s and Alzheimer’s diseases.



"Going from one cell to two, or cytokinesis, is one of the most fundamental of cellular events," dating to a time when life evolved from single-celled organisms, explains Ahna Skop, an assistant professor of genetics with the UW-Madison College of Agricultural and Life Sciences. "It applies to all species and organisms, and it is fundamental to the growth and development of all life on this planet."

However, just as cell division is the key to life, failures in the process can lead to certain diseases, says Skop.

"Several diseases are caused by cells that don’t divide properly, or divide out of control, as in cancer," she says. "In addition, proteins that work during cell division may also work in the neurons in our brain or during wound healing, for example. So understanding how cell division works can help us understand how many other specific types of cells function."

With a new understanding of which proteins affect cell division, medical researchers can potentially develop new drugs to prevent cancer and birth defects, treat fertility and neurological disorders, or aide in wound healing, for example.

During the cell cycle, the genetic information the cell contains is copied and segregated into two new cells. During normal division, the outer membrane of the cell pinches in, forming two separate cells. Although a very simple event, scientists had not fully understood the mechanisms or identified the proteins involved in separating the two newly formed cells, says Skop.

As a graduate student at UW-Madison in John White’s laboratory, Skop became interested in an ephemeral cellular feature called the midbody, which forms briefly - lasting only a minute in the cells of some species - during cell division.

"It was identified over 125 years ago by Walther Flemming, but hadn’t been studied much or paid attention to since," she explains. "Most people thought it was cellular garbage."

However, Skop suspected that the midbody was more than an ancient relic with no useful function. She and colleagues used methods developed in the 1980s by Ryoko Kuriyama, then a UW-Madison postdoctoral researcher and now at the University of Minnesota, and Michael Mullins, now at Catholic University, to isolate midbodies from hamster ovary cells. They then analyzed and identified more than 500 proteins contained in the midbodies.

"Proteins are the building blocks of the cell," Skop says. "As the cell divides and a new membrane forms, the proteins found during that time in the cell cycle would be crucial elements in understanding how the process works."

The next step was to inactivate each protein in a developing embryo. If a defect occurred, it would mean that the inactivated protein is essential for normal development.

"We used nematodes, which are small roundworms that are cheaper and quicker to use than mammalian cells, to assess gene function," Skop says. "All but two of the proteins from the mammalian cells were homologous in the nematodes, which allowed us to perform this mutli-organismal approach. The fact that the process is highly conserved across two very different species shows how ancient and conserved the process of cell division is."

The team analyzed 160 key proteins - including 103 not previously known to function in cell division - and found that 58 percent caused cytokinesis defects if they were inactivated.

"The problems ranged from cells where chromosomes failed to separate normally, leaving extra DNA in one of the new cells, as is seen in Down’s syndrome, for example, to cells in which the dividing membrane would begin to form normally and would suddenly retract before the cells could separate," Skop says. "Many of the proteins caused a variety of cell division and division-related defects."


Skop, who also has an appointment with the UW-Madison Medical School, conducted some of this work as a postdoctoral researcher at the University of California, Berkeley. Her co-authors on the paper are Hongbin Liu and John Yates from the Scripps Research Institute, Rebecca Heald from UC Berkeley, and Barbara Meyer from UC Berkeley and the Howard Hughes Medical Institute.

The National Institutes of Health and the state of Wisconsin funded Skop’s work.

Ahna Skop | EurekAlert!
Further information:
http://www.news.wisc.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>