Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes found in Mayan ruins may deteriorate stone from inside out

28.05.2004


Researchers from Havard University have discovered the presence of a previously unidentified microbial community inside the porous stone of the Maya ruins in Mexico that may be capable of causing rapid deterioration of these sites. They present their findings at the 104th General Meeting of the American Society for Microbiology.



"The presence of a previously undescribed endolithic microbial community that is different than the surface community has important implications for the conservation of Maya ruins as well as other stone objects and structures," says Christopher McNamara, a researcher on the study.

McNamara and his colleagues collected stone samples from a Maya archaeological site and separated it into surface and interior portions, which were then broken down into tiny particles. They extracted DNA from the samples and identified and compared bacterial communities on the inside and outside surfaces of the stone. Photosynthetic microorganisms, mainly proteobacteria, were found to populate the surface whereas Actinobacteria was the dominate population on the interior where no photosynthetic organisms were detected. Additional tests on the interior bacterial communities suggest that they break down limestone as they grow.


"Surface analysis of microbial growth and disinfection of stone objects and buildings can no longer be considered sufficient," says McNamara. "Furthermore, treatments designed to penetrate stone objects must consider the presence of a microbial community that may be substantially different than that visible on the surface."


This release is a summary of a presentation from the 104th General Meeting of the American Society for Microbiology, May 23-27, 2004, in New Orleans, Louisiana. Additional information on these and other presentations at the 104th ASM General Meeting can be found online at http://www.asm.org/Media/index.asp?bid=27289 or by contacting Jim Sliwa (jsliwa@asmusa.org) in the ASM Office of Communications. The phone number for the General Meeting Press Room is (504) 670-4240 and will be active from 12:00 noon CDT, May 23 until 12:00 noon CDT, May 27.

Jim Sliwa | EurekAlert!
Further information:
http://www.asm.org/Media/index.asp?bid=27289

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>