Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes found in Mayan ruins may deteriorate stone from inside out

28.05.2004


Researchers from Havard University have discovered the presence of a previously unidentified microbial community inside the porous stone of the Maya ruins in Mexico that may be capable of causing rapid deterioration of these sites. They present their findings at the 104th General Meeting of the American Society for Microbiology.



"The presence of a previously undescribed endolithic microbial community that is different than the surface community has important implications for the conservation of Maya ruins as well as other stone objects and structures," says Christopher McNamara, a researcher on the study.

McNamara and his colleagues collected stone samples from a Maya archaeological site and separated it into surface and interior portions, which were then broken down into tiny particles. They extracted DNA from the samples and identified and compared bacterial communities on the inside and outside surfaces of the stone. Photosynthetic microorganisms, mainly proteobacteria, were found to populate the surface whereas Actinobacteria was the dominate population on the interior where no photosynthetic organisms were detected. Additional tests on the interior bacterial communities suggest that they break down limestone as they grow.


"Surface analysis of microbial growth and disinfection of stone objects and buildings can no longer be considered sufficient," says McNamara. "Furthermore, treatments designed to penetrate stone objects must consider the presence of a microbial community that may be substantially different than that visible on the surface."


This release is a summary of a presentation from the 104th General Meeting of the American Society for Microbiology, May 23-27, 2004, in New Orleans, Louisiana. Additional information on these and other presentations at the 104th ASM General Meeting can be found online at http://www.asm.org/Media/index.asp?bid=27289 or by contacting Jim Sliwa (jsliwa@asmusa.org) in the ASM Office of Communications. The phone number for the General Meeting Press Room is (504) 670-4240 and will be active from 12:00 noon CDT, May 23 until 12:00 noon CDT, May 27.

Jim Sliwa | EurekAlert!
Further information:
http://www.asm.org/Media/index.asp?bid=27289

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>