Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists make molecular interlocked rings

28.05.2004



UCLA chemists have devised an elegant solution to an intricate problem at the nanoscale that stumped scientists for many years: They have made a mechanically interlocked compound whose molecules have the topology of the beloved interlocked Borromean rings. In the May 28 issue of the journal Science, the team reports nanoscience that could be described as art.

The UCLA group is the first to achieve this goal in total chemical synthesis, which research groups worldwide have been pursuing.

Named for a noble Italian family, the Borromean rings first appeared on the family’s coat of arms in the 15th century. Examples of the rings can be seen in buildings on three islands in northern Italy’s Lake Maggiore, which are still owned by the Borromeo family. The Borromean link comprises three interlocked rings that form one inseparable union such that cutting any one ring results in the other two falling apart.



"This is nanoscience, but also much more," said Fraser Stoddart, UCLA’s Fred Kavli Professor of Nanosystems Sciences and director of the California NanoSystems Institute at UCLA. "The Borromean Rings pervade art, theology, mythology and heraldry, as well as mathematics, physics and chemistry. Go to the Google search engine and you are confronted with more than 2,000 hits."

"The realization of the Borromean link in a wholly synthetic molecular form has long been regarded as the most ambitious and challenging target in topological chemistry -- a Gordian knot," Stoddart said. "The near-quantitative assembly of this topological link from 18 components by templation around six metals of six organic pieces with two ’teeth’ and another six with three ’teeth’ to grip the metals, resulting in the intermittent opening and closing of 12 carbon-nitrogen double bonds, cuts this Gordian knot once and for all."

(An ancient Greek oracle foretold that whoever untied the intricate Gordian knot, a knot with no ends exposed, would rule all of Asia. The problem resisted all attempted solutions until 333 B.C., when Alexander the Great is said to have cut through the knot with his sword.)

The "high-risk, all-in-one, mix-the-pieces together, and shake-them-all-about" approach was the brain-child in November 1999 of graduate student Stuart Cantrill in Stoddart’s research group. Cantrill is now a lecturer and research associate in UCLA’s department of chemistry and biochemistry.

Aided by the computational wizardry of fellow graduate student Anthony Pease, Cantrill conceived a topology that was modeled to vindicate the perfect matching of the three identical, mutually interlocking rings around the six metal templates. "The three rings slotted into place perfectly, encompassing the six metals effortlessly in three-dimensional space," Cantrill said.

"We both stared at the screen and agreed there and then that it just had to work," Cantrill said. "It looked so perfect, so beautiful."

"Putting the caboodle together in the computer was one thing; translating it into a chemical reality in the laboratory was quite another," Stoddart said. Two of the three sets of six pieces could be bought, but the remaining one had to be made in a complex seven-step synthesis.

The first tentative steps were taken by Pease, who said, "As a computational chemist, I would normally avoid getting my hands wet in the laboratory, but this molecule was so irresistible, I decided to give it a try."

Cantrill and Pease graduated from UCLA in 2001 and left the completion of the synthesis of the all-important third piece to postdoctoral fellow Shien-Hsien Chiu, now an assistant professor of chemistry at the National Taiwan University.

"With all three pieces in place, the most challenging part of the puzzle still lay ahead of us," Stoddart said. "I was then blessed with the arrival in 2002 of postdoctoral researcher extraordinaire Kelly Chichak. He brought with him a knowledge base and expertise in coordination and supramolecular chemistry that made him a natural when it came to doing chemical synthesis in a proofreading, error-checking fashion. It would not have happened without Kelly’s nous."

Chichak said, "I just happened to land in the right place at the right time. I was immediately sucked into the quest for the molecular Borromean rings because of their rich history and appealing symmetry."

His challenge was to unearth just the right set of conditions to coax 18 components to click together in one way and give "a beautifully crafted molecule which literally made itself in my hands," according to Chichak.

Stoddart views the near-quantitative assembly as one of the finest that dynamic chemistry has delivered in his laboratory to date. "It doesn’t happen all that often: it is good old thermodynamics to the rescue, with a real vengeance at that."

Or as Chichak puts it, "Simply mix and heat and a single product emerges out of the thousands of possibilities: That’s all I needed to do."

More than 30 years ago, Robert Woodward at Harvard and Albert Eschenmoser at the Swiss Federal Institute of Technology (ETH) in Zürich created Vitamin B12 chemically in a laboratory, a triumph of chemical synthesis, Stoddart noted. "Similarly, during the past decade, a total synthesis of Borromean rings in a molecular form has become the Herculean challenge in contemporary synthesis, where Darwinian selection operates in a chemically evolving system," he said.

Chichak obtained X-ray-quality single crystals from which postdoctoral fellow Gareth Cave solved the structure in the laboratory of Jerry Atwood, chemistry professor at the University of Missouri, Columbia.

Each molecule of the Borromean ring compound is 2.5 nanometers across and contains an inner chamber that is a quarter of a cubic nanometer in volume and is lined by 12 oxygen atoms.

"When your mind turns to potential applications, the molecule has so much going for it," Stoddart said.

"Now that we are addressing what they might do for us, the list becomes endless," Chichak said.

Release URL, if available: The URL must point to the specific release, not a general page of releases or your organization’s main homepage.IThe ability to produce gram quantities of highly soluble hosts that can locate a range of different transition metals in an insulated octahedral array around an inner oxygen atom-lined chamber, which can provide a welcoming home for many different guests, suggests numerous ways in which these molecular Borromean rings could be explored as highly organized nano?clusters in a materials setting such as spintronics or in a biological context such as medical imaging, Stoddart said.

"When all is said and done, the molecular Borromean rings should be judged by their magnificent looks at this early stage in their existence," Stoddart said. "As one of the reviewers of the original manuscript wrote, ’The beauty of the molecular structure is really breathtaking.’"

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>