Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant biological machine makes proteins but can’t let go

28.05.2004


Finding overturns long held ideas about how cells build proteins



Writing in the May 28 issue of Cell, Johns Hopkins researchers report that four critical components of cells’ protein-building machine don’t do what scientists had long assumed.
The machine, called the ribosome, is a ball of RNA (DNA’s cousin) surrounded by proteins. In the RNA center, genetic instructions are read, the right protein building block is added onto a growing chain, and at the appropriate time the chain is snipped and released.

But while researchers have long known that the ribosome builds proteins, little is understood about exactly how it adds to growing proteins and how it releases the finished product.



In the hunt for these details, scientists have focused on four RNA building blocks, or nucleotides, deep within the machine that are identical in every species, from bacteria to humans. Because they sit where the protein chain is actually built, these "universally conserved" nucleotides in the ribosome were thought to help that process.

Unexpectedly, Johns Hopkins researchers have discovered that these four nucleotides are not important for building the protein, but instead help release the finished product. In laboratory experiments, the researchers found that ribosomes with these key spots changed could put proteins together as well as normal ribosomes, but let go of the finished product much more slowly.

"Most scientists have said that these four nucleotides must be critical for synthesis of the growing protein because of their location, and we fully expected that our studies would prove that to be true," says Rachel Green, Ph.D., associate professor of molecular biology and genetics and a Howard Hughes Medical Institute associate investigator. "We were shocked that they appear to play very little if any role in building proteins, and instead normally speed the protein’s release at the right time.

"Our finding underscores the idea that if you build a well-defined system to study a biologic question, you’ll get answers you didn’t expect," adds Green.

Instead of validating existing ideas about the role played by these conserved nucleotides, the researchers’ work suggests a brand new model, says Green. The ribosome actually has another set of evolutionarily unchanged nucleotides, slightly farther from its "business end." Green and her colleagues believe these nucleotides are really responsible for catalyzing the protein’s construction, simply by properly orienting the new building block and the chain, an idea they are testing now.

For the current study, graduate student Elaine Youngman first created 12 mutant ribosomes -- the 12 singly changed alternatives to the natural ribosome. (Four nucleotide building blocks are used to make RNA. Each mutant had one of the four conserved nucleotides replaced with one of its three alternatives.)

Then Youngman tested the ability of each of the purified mutant ribosomes to add a molecule called puromycin onto a growing protein chain. Puromycin looks and acts like a normal protein building block, or amino acid, ready for protein synthesis. However, each amino acid normally used by the ribosome has an identifying RNA "tag," which puromycin almost entirely lacks.

"We had hoped to see one of the mutants really stand out as being incapable of doing this reaction," says Green. "But instead, none of the mutants could do it efficiently, which left us scratching our heads."

So the researchers tested the ribosomes’ ability to use their normal starting materials: actual amino acids attached to their correct RNA tag. Much to the researchers’ surprise, the mutant ribosomes performed perfectly.

"The key difference between puromycin and the real amino acids used in this reaction is that puromycin lacks the RNA tag," says Green. "Researchers use puromycin all the time to study ribosome function, for many good reasons. But now we know ribosomes don’t always treat this molecule as they would real amino acids."

As a result, she says, scientists should carefully evaluate whether the use of puromycin could have skewed interpretation of their experiments.

Amino acids’ RNA tags, called transfer RNA or tRNA, help the ribosome identify the right amino acid to add to the protein, since it matches itself to the genetic instructions (messenger RNA) the ribosome is reading. But the tRNA also acts as a handle for the small amino acid: Specific parts of the tRNA are "held" by other evolutionarily unchanged nucleotides in the ribosome as the amino acid is added onto the protein. Green points out that these nucleotides quite likely position the amino acid properly to catalyze what is already a pretty easy reaction.


The scientists were funded by the National Institute of General Medical Sciences and the Howard Hughes Medical Institute. Authors on the paper are Biochemistry and Molecular Biology graduate student Youngman, Green, laboratory technician Julie Brunelle and undergraduate student Anna Kochaniak, all of Johns Hopkins.

Joanna Downer | EurekAlert!
Further information:
http://www.cell.com
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>