Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutant biological machine makes proteins but can’t let go

28.05.2004


Finding overturns long held ideas about how cells build proteins



Writing in the May 28 issue of Cell, Johns Hopkins researchers report that four critical components of cells’ protein-building machine don’t do what scientists had long assumed.
The machine, called the ribosome, is a ball of RNA (DNA’s cousin) surrounded by proteins. In the RNA center, genetic instructions are read, the right protein building block is added onto a growing chain, and at the appropriate time the chain is snipped and released.

But while researchers have long known that the ribosome builds proteins, little is understood about exactly how it adds to growing proteins and how it releases the finished product.



In the hunt for these details, scientists have focused on four RNA building blocks, or nucleotides, deep within the machine that are identical in every species, from bacteria to humans. Because they sit where the protein chain is actually built, these "universally conserved" nucleotides in the ribosome were thought to help that process.

Unexpectedly, Johns Hopkins researchers have discovered that these four nucleotides are not important for building the protein, but instead help release the finished product. In laboratory experiments, the researchers found that ribosomes with these key spots changed could put proteins together as well as normal ribosomes, but let go of the finished product much more slowly.

"Most scientists have said that these four nucleotides must be critical for synthesis of the growing protein because of their location, and we fully expected that our studies would prove that to be true," says Rachel Green, Ph.D., associate professor of molecular biology and genetics and a Howard Hughes Medical Institute associate investigator. "We were shocked that they appear to play very little if any role in building proteins, and instead normally speed the protein’s release at the right time.

"Our finding underscores the idea that if you build a well-defined system to study a biologic question, you’ll get answers you didn’t expect," adds Green.

Instead of validating existing ideas about the role played by these conserved nucleotides, the researchers’ work suggests a brand new model, says Green. The ribosome actually has another set of evolutionarily unchanged nucleotides, slightly farther from its "business end." Green and her colleagues believe these nucleotides are really responsible for catalyzing the protein’s construction, simply by properly orienting the new building block and the chain, an idea they are testing now.

For the current study, graduate student Elaine Youngman first created 12 mutant ribosomes -- the 12 singly changed alternatives to the natural ribosome. (Four nucleotide building blocks are used to make RNA. Each mutant had one of the four conserved nucleotides replaced with one of its three alternatives.)

Then Youngman tested the ability of each of the purified mutant ribosomes to add a molecule called puromycin onto a growing protein chain. Puromycin looks and acts like a normal protein building block, or amino acid, ready for protein synthesis. However, each amino acid normally used by the ribosome has an identifying RNA "tag," which puromycin almost entirely lacks.

"We had hoped to see one of the mutants really stand out as being incapable of doing this reaction," says Green. "But instead, none of the mutants could do it efficiently, which left us scratching our heads."

So the researchers tested the ribosomes’ ability to use their normal starting materials: actual amino acids attached to their correct RNA tag. Much to the researchers’ surprise, the mutant ribosomes performed perfectly.

"The key difference between puromycin and the real amino acids used in this reaction is that puromycin lacks the RNA tag," says Green. "Researchers use puromycin all the time to study ribosome function, for many good reasons. But now we know ribosomes don’t always treat this molecule as they would real amino acids."

As a result, she says, scientists should carefully evaluate whether the use of puromycin could have skewed interpretation of their experiments.

Amino acids’ RNA tags, called transfer RNA or tRNA, help the ribosome identify the right amino acid to add to the protein, since it matches itself to the genetic instructions (messenger RNA) the ribosome is reading. But the tRNA also acts as a handle for the small amino acid: Specific parts of the tRNA are "held" by other evolutionarily unchanged nucleotides in the ribosome as the amino acid is added onto the protein. Green points out that these nucleotides quite likely position the amino acid properly to catalyze what is already a pretty easy reaction.


The scientists were funded by the National Institute of General Medical Sciences and the Howard Hughes Medical Institute. Authors on the paper are Biochemistry and Molecular Biology graduate student Youngman, Green, laboratory technician Julie Brunelle and undergraduate student Anna Kochaniak, all of Johns Hopkins.

Joanna Downer | EurekAlert!
Further information:
http://www.cell.com
http://www.hopkinsmedicine.org/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>