Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VA/UCLA researchers pinpoint role of histamines in waking

27.05.2004


A study by scientists with the Veterans Affairs’ Neurobiology Research Laboratory and UCLA Neuropsychiatric Institute shows that brain cells containing the chemical histamine are critical for waking.



Detailed in the May 27 edition of the journal Neuron, the findings show that the cessation of activity in histamine cells causes loss of consciousness during sleep, while cessation of activity in other brain cells--those containing the brain chemicals norepinephrine or serotonin--causes loss of muscle tone in sleep. The findings also help explain why antihistamines, often taken to control allergies, cause drowsiness.

"Our findings greatly improve our understanding of the brain activity responsible for maintaining consciousness and muscle tone while awake," said Dr. Jerome Siegel, senior author on the study. "The findings should aid in the development of drugs to induce sleep and to increase alertness." Siegel is chief of neurobiology research at the VA Greater Los Angeles Healthcare System, Sepulveda, and a professor at the UCLA Neuropsychiatric Institute.


The research team conducted their study using dogs with the sleep disorder narcolepsy, in which sudden collapses of muscle tone, known as cataplexy, occur during waking. Although waking alertness is maintained during cataplexy, muscle tone is lost.

In both narcoleptic and normal animals, cells containing histamine, norepinephrine and serotonin are active in waking and inactive in sleep. The researchers studied their activity in cataplexy to pinpoint the roles of the three cell groups in the loss of consciousness and loss of muscle tone that occur during sleep.

The VA/UCLA researchers found that histamine cell activity continued during cataplexy, indicating that their activity is linked to waking. The team also found that norepinephrine and serotonin cell activity ceases in cataplexy, showing that their activity is related to muscle tone, rather than waking.

In 2000, Siegel’s team published its findings that narcoleptics had 95 percent fewer hypocretin (orexin) nerve cells in their brains than those without the illness. The study was the first to show a possible biological cause of narcolepsy.


The VA Greater Los Angeles Health Care System’s Neurobiology Research Laboratory is a part of the Sleep Research Group. This multidisciplinary group of investigators is pursuing innovative ways to prevent and treat sleep disorders. Current studies focus on body-temperature regulation during sleep; brain mechanisms regulating sleep and circadian rhythms; narcolepsy and its causes; and the role of sleep in epileptic events.

The UCLA Neuropsychiatric Institute is an interdisciplinary research and education institute devoted to the understanding of complex human behavior, including the genetic, biological, behavioral and sociocultural underpinnings of normal behavior, and the causes and consequences of neuropsychiatric disorders. More information about the Institute is available online at www.npi.ucla.edu.

Dan Page | EurekAlert!
Further information:
http://www.npi.ucla.edu.

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>