Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular image of genotoxin reveals how bacteria damage human DNA

27.05.2004


The three-dimensional structure of a DNA-damaging, bacterial toxin has been visualized by scientists at Rockefeller University. The molecular image of the toxin, published in the May 27 issue of the journal Nature, shows exactly how the toxin is put together at the molecular level and damages human DNA. The structure also could help scientists to design new drugs to fight the wide variety of bacteria that use this toxin.



The toxin, called cytolethal distending toxin, or CDT, is used by bacteria that cause a range of diseases, from typhoid fever to diarrhea. And unlike any other bacterial toxin discovered to date, CDT attacks the DNA in human cells, creating lesions and breaks that cause cells to stop dividing and eventually die.

Principal investigator C. Erec Stebbins, Ph.D., who conducted the research with Rockefeller colleagues Dragana Nesic, Ph.D., and Yun Hsu, says that having a chemical model provides a visual blueprint for understanding how the toxin damages DNA.


"CDT may be a carcinogen because it damages DNA," says Stebbins, assistant professor and head of the Laboratory of Structural Microbiology at Rockefeller. "That makes CDT interesting in terms of both infectious disease and cancer."

While normal cells regularly replicate, or make exact copies of themselves, cells exposed to CDT go into "cell cycle arrest." While some CDT-invaded cells continue to grow in size without dividing, others commit suicide through a process known as apoptosis.

These cellular reactions to CDT invasion are not surprising because cells have "checkpoint" mechanisms to insure that DNA sequences are copied correctly during the process of replication, says Stebbins. When a "mistake" or a break in DNA is detected, cells either repair the DNA, or, if it is irreparable, they stop replicating and often commit suicide. This process is a protection mechanism to stop mistakes from being propagated.

Stebbins says that CDT-containing bacteria might induce cell cycle arrest because it stops cells from being sloughed off in areas such as the intestines where bacteria seek to make a home.

"CDT may also act as an immunosuppressant," says Stebbins, "since the immune system requires cell division to respond to microbial infection."

There are nearly 10 different species of disease-causing bacteria that use CDT, including Salmonella typhi, a bacteria that causes typhoid fever; Haemophilus ducreyi, a bacteria that causes genital ulcers; Campylobacter jejuni, a common cause of food poisoning; certain strains of Escherichia coli that cause diarrhea, and a host of other pathogenic bacteria.

"More CDT-containing bacteria are discovered each year," says Stebbins, "Many of these bacteria cause very different kinds of diseases and colonize different tissues. But they all have CDT. To me, that argues that it’s playing an important role."

Stebbins’ structure of CDT visually confirms that this genotoxin is made up of three subunits, including one called CdtB that cleaves, or cuts, DNA.

According to Stebbins’ model, the three-unit toxin contains a long, deep groove, a cluster of ring-shaped molecules, called the "aromatic patch," and a dangling protein tail that can block a key portion of the CdtB subunit that is necessary for DNA cleavage.

"We’re not sure what the role of the cleavage-blocking protein tail is, but the structure helps us to understand how to interact with the active site of CdtB to impair its activity, which could give us some ideas for achieving the same thing with a drug molecule," said Stebbins.

Armed with an atomic model of a protein, scientists can program computers to screen virtual representations of millions of compounds to see if they have a good chance of interacting with the target. Compounds are narrowed down to a selected few, which are then tested to determine how well they interact with the drug target. By screening compounds by computer before physically testing them, drug makers save time and money.

Stebbins’ laboratory includes a drug-design team, which is currently designing molecules to thwart bioterrorism agents such as anthrax and plague. In the future, the lab might design a drug against the CDT toxin, Stebbins says.

"We can screen three million molecules against a particular target in two weeks by computer," says Stebbins. "That’s good for finding about 500 molecules that are potential drugs that can be examined for activity against a protein. But after that come other hurdles, such as whether molecules can enter and work within cells and organisms."

The hardest part of solving CDT’s structure was isolating hundreds of milligrams of the toxin in a pure form, says first author Nesic, who went through more than 24 gallons of buffer solution per week in order to purify the toxin into a form that could be used for crystallization. It took Nesic nearly two years to obtain the crystals she needed for X-ray crystallography - a technique that records the pattern produced when X-rays bounce off a target protein crystal.

"You have to find the right conditions and the right concentrations for crystallization," said Nesic. "You start with liters, and you end up with a single drop."

Stebbins has solved the structures of over ten other proteins, including the cancer-related VHL tumor-suppressor and several other bacterial toxins, before solving the structure of CDT.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>