Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular image of genotoxin reveals how bacteria damage human DNA

27.05.2004


The three-dimensional structure of a DNA-damaging, bacterial toxin has been visualized by scientists at Rockefeller University. The molecular image of the toxin, published in the May 27 issue of the journal Nature, shows exactly how the toxin is put together at the molecular level and damages human DNA. The structure also could help scientists to design new drugs to fight the wide variety of bacteria that use this toxin.



The toxin, called cytolethal distending toxin, or CDT, is used by bacteria that cause a range of diseases, from typhoid fever to diarrhea. And unlike any other bacterial toxin discovered to date, CDT attacks the DNA in human cells, creating lesions and breaks that cause cells to stop dividing and eventually die.

Principal investigator C. Erec Stebbins, Ph.D., who conducted the research with Rockefeller colleagues Dragana Nesic, Ph.D., and Yun Hsu, says that having a chemical model provides a visual blueprint for understanding how the toxin damages DNA.


"CDT may be a carcinogen because it damages DNA," says Stebbins, assistant professor and head of the Laboratory of Structural Microbiology at Rockefeller. "That makes CDT interesting in terms of both infectious disease and cancer."

While normal cells regularly replicate, or make exact copies of themselves, cells exposed to CDT go into "cell cycle arrest." While some CDT-invaded cells continue to grow in size without dividing, others commit suicide through a process known as apoptosis.

These cellular reactions to CDT invasion are not surprising because cells have "checkpoint" mechanisms to insure that DNA sequences are copied correctly during the process of replication, says Stebbins. When a "mistake" or a break in DNA is detected, cells either repair the DNA, or, if it is irreparable, they stop replicating and often commit suicide. This process is a protection mechanism to stop mistakes from being propagated.

Stebbins says that CDT-containing bacteria might induce cell cycle arrest because it stops cells from being sloughed off in areas such as the intestines where bacteria seek to make a home.

"CDT may also act as an immunosuppressant," says Stebbins, "since the immune system requires cell division to respond to microbial infection."

There are nearly 10 different species of disease-causing bacteria that use CDT, including Salmonella typhi, a bacteria that causes typhoid fever; Haemophilus ducreyi, a bacteria that causes genital ulcers; Campylobacter jejuni, a common cause of food poisoning; certain strains of Escherichia coli that cause diarrhea, and a host of other pathogenic bacteria.

"More CDT-containing bacteria are discovered each year," says Stebbins, "Many of these bacteria cause very different kinds of diseases and colonize different tissues. But they all have CDT. To me, that argues that it’s playing an important role."

Stebbins’ structure of CDT visually confirms that this genotoxin is made up of three subunits, including one called CdtB that cleaves, or cuts, DNA.

According to Stebbins’ model, the three-unit toxin contains a long, deep groove, a cluster of ring-shaped molecules, called the "aromatic patch," and a dangling protein tail that can block a key portion of the CdtB subunit that is necessary for DNA cleavage.

"We’re not sure what the role of the cleavage-blocking protein tail is, but the structure helps us to understand how to interact with the active site of CdtB to impair its activity, which could give us some ideas for achieving the same thing with a drug molecule," said Stebbins.

Armed with an atomic model of a protein, scientists can program computers to screen virtual representations of millions of compounds to see if they have a good chance of interacting with the target. Compounds are narrowed down to a selected few, which are then tested to determine how well they interact with the drug target. By screening compounds by computer before physically testing them, drug makers save time and money.

Stebbins’ laboratory includes a drug-design team, which is currently designing molecules to thwart bioterrorism agents such as anthrax and plague. In the future, the lab might design a drug against the CDT toxin, Stebbins says.

"We can screen three million molecules against a particular target in two weeks by computer," says Stebbins. "That’s good for finding about 500 molecules that are potential drugs that can be examined for activity against a protein. But after that come other hurdles, such as whether molecules can enter and work within cells and organisms."

The hardest part of solving CDT’s structure was isolating hundreds of milligrams of the toxin in a pure form, says first author Nesic, who went through more than 24 gallons of buffer solution per week in order to purify the toxin into a form that could be used for crystallization. It took Nesic nearly two years to obtain the crystals she needed for X-ray crystallography - a technique that records the pattern produced when X-rays bounce off a target protein crystal.

"You have to find the right conditions and the right concentrations for crystallization," said Nesic. "You start with liters, and you end up with a single drop."

Stebbins has solved the structures of over ten other proteins, including the cancer-related VHL tumor-suppressor and several other bacterial toxins, before solving the structure of CDT.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>