Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected similarities between raindrops and proteins

27.05.2004


Raindrops and proteins seem to have a lot in common. This has been shown in a new study by scientists at Umeå University in Sweden. The principle behind the formation of raindrops is very similar to how proteins fold. This knowledge is vital to our understanding of neurodegenerative diseases like ALS.



These findings have been published in the latest issue of the journal Proceedings of the National Academy of Sciences and have caught the attention of the international research community. The study was carried out by the biochemists Mikael Oliveberg and Linda Hedberg at Umeå University.

To form a raindrop, it is not enough for a few water molecules to stick together. About 100 water molecules have to conglomerate at the same time. If there are fewer, the drop cannot begin to grow, but it falls to pieces immediately.


Using newly developed theory, Linda Hedberg and Mikael Oliveberg have shown that the inscrutable building blocks of the body, proteins, adopt their proper shape in a similar manner. Unlike water, proteins are made up of long chains, and these chains have to instantly fold to a globular form to keep the normal function of the cell. But just like raindrops, it is not enough if just a few segments of the protein chains start tangling together. All parts have to come together at once, otherwise nothing happens. The scientists see a key principle in this.

“Now that we see the similarities between the genesis of raindrops and the folding of proteins we can also analyze protein folding in a clearer light. We have a stringent theory to follow,” says Mikael Oliveberg.

The complicated way in which proteins fold offers the advantage that no half-developed proteins are formed. If such half-developed proteins nevertheless accumulate, they tend to stick to each other, which in turn can lead the cell to “commit suicide”. Such improper folding in the sensitive nerve cells lies behind severe disorders like ALS, mad-cow disease, and Alzheimer’s disease. At present these diseases are incurable because the knowledge of the misfolding process is yet fragmental.

With the aid of the new theory, these scientists are now working to map what parts of the proteins control the folding and what parts are vulnerable to noxious misfolding. The findings could represent an important step toward a more detailed molecular understanding of how proteins behave in our cells and what happens when things go wrong. As so often in the past, parts of the puzzle turn up when they are least expected: in this case the principle behind the formation of raindrops may be the key to understanding neurodegenerative diseases.

“The connection between raindrops and proteins may seem simple, but simple solutions are often the right ones. It also shows how everything fits together in nature. Phenomena recur, but with different faces. If we can understand protein folding with help of this theory, we will also be gaining a greater knowledge of life and why things sometimes go wrong,” says Mikael Oliveberg.

Karin Wikman | alfa
Further information:
http://www.info.umu.se/Press/PressRelease.aspx?id=1480

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>