Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected similarities between raindrops and proteins

27.05.2004


Raindrops and proteins seem to have a lot in common. This has been shown in a new study by scientists at Umeå University in Sweden. The principle behind the formation of raindrops is very similar to how proteins fold. This knowledge is vital to our understanding of neurodegenerative diseases like ALS.



These findings have been published in the latest issue of the journal Proceedings of the National Academy of Sciences and have caught the attention of the international research community. The study was carried out by the biochemists Mikael Oliveberg and Linda Hedberg at Umeå University.

To form a raindrop, it is not enough for a few water molecules to stick together. About 100 water molecules have to conglomerate at the same time. If there are fewer, the drop cannot begin to grow, but it falls to pieces immediately.


Using newly developed theory, Linda Hedberg and Mikael Oliveberg have shown that the inscrutable building blocks of the body, proteins, adopt their proper shape in a similar manner. Unlike water, proteins are made up of long chains, and these chains have to instantly fold to a globular form to keep the normal function of the cell. But just like raindrops, it is not enough if just a few segments of the protein chains start tangling together. All parts have to come together at once, otherwise nothing happens. The scientists see a key principle in this.

“Now that we see the similarities between the genesis of raindrops and the folding of proteins we can also analyze protein folding in a clearer light. We have a stringent theory to follow,” says Mikael Oliveberg.

The complicated way in which proteins fold offers the advantage that no half-developed proteins are formed. If such half-developed proteins nevertheless accumulate, they tend to stick to each other, which in turn can lead the cell to “commit suicide”. Such improper folding in the sensitive nerve cells lies behind severe disorders like ALS, mad-cow disease, and Alzheimer’s disease. At present these diseases are incurable because the knowledge of the misfolding process is yet fragmental.

With the aid of the new theory, these scientists are now working to map what parts of the proteins control the folding and what parts are vulnerable to noxious misfolding. The findings could represent an important step toward a more detailed molecular understanding of how proteins behave in our cells and what happens when things go wrong. As so often in the past, parts of the puzzle turn up when they are least expected: in this case the principle behind the formation of raindrops may be the key to understanding neurodegenerative diseases.

“The connection between raindrops and proteins may seem simple, but simple solutions are often the right ones. It also shows how everything fits together in nature. Phenomena recur, but with different faces. If we can understand protein folding with help of this theory, we will also be gaining a greater knowledge of life and why things sometimes go wrong,” says Mikael Oliveberg.

Karin Wikman | alfa
Further information:
http://www.info.umu.se/Press/PressRelease.aspx?id=1480

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>