Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected similarities between raindrops and proteins

27.05.2004


Raindrops and proteins seem to have a lot in common. This has been shown in a new study by scientists at Umeå University in Sweden. The principle behind the formation of raindrops is very similar to how proteins fold. This knowledge is vital to our understanding of neurodegenerative diseases like ALS.



These findings have been published in the latest issue of the journal Proceedings of the National Academy of Sciences and have caught the attention of the international research community. The study was carried out by the biochemists Mikael Oliveberg and Linda Hedberg at Umeå University.

To form a raindrop, it is not enough for a few water molecules to stick together. About 100 water molecules have to conglomerate at the same time. If there are fewer, the drop cannot begin to grow, but it falls to pieces immediately.


Using newly developed theory, Linda Hedberg and Mikael Oliveberg have shown that the inscrutable building blocks of the body, proteins, adopt their proper shape in a similar manner. Unlike water, proteins are made up of long chains, and these chains have to instantly fold to a globular form to keep the normal function of the cell. But just like raindrops, it is not enough if just a few segments of the protein chains start tangling together. All parts have to come together at once, otherwise nothing happens. The scientists see a key principle in this.

“Now that we see the similarities between the genesis of raindrops and the folding of proteins we can also analyze protein folding in a clearer light. We have a stringent theory to follow,” says Mikael Oliveberg.

The complicated way in which proteins fold offers the advantage that no half-developed proteins are formed. If such half-developed proteins nevertheless accumulate, they tend to stick to each other, which in turn can lead the cell to “commit suicide”. Such improper folding in the sensitive nerve cells lies behind severe disorders like ALS, mad-cow disease, and Alzheimer’s disease. At present these diseases are incurable because the knowledge of the misfolding process is yet fragmental.

With the aid of the new theory, these scientists are now working to map what parts of the proteins control the folding and what parts are vulnerable to noxious misfolding. The findings could represent an important step toward a more detailed molecular understanding of how proteins behave in our cells and what happens when things go wrong. As so often in the past, parts of the puzzle turn up when they are least expected: in this case the principle behind the formation of raindrops may be the key to understanding neurodegenerative diseases.

“The connection between raindrops and proteins may seem simple, but simple solutions are often the right ones. It also shows how everything fits together in nature. Phenomena recur, but with different faces. If we can understand protein folding with help of this theory, we will also be gaining a greater knowledge of life and why things sometimes go wrong,” says Mikael Oliveberg.

Karin Wikman | alfa
Further information:
http://www.info.umu.se/Press/PressRelease.aspx?id=1480

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>