Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probability Controls The Molecule Of Life

24.05.2004


Thanks to biophysicists, statistics has reached the most intimate aspect of life – regulation of genes’ activity. Investigation on probabilistic aspects of molecular biology has been supported by the Russian Foundation for Basic Research and the INTAS Foundation.



Regulation of genes’ activity is one of the most important biological problems which has not been solved so far. A cell switches on and off its genes through multiple factors, which, if required, interact with certain sections of a chromosome or vice versa, leave them. While molecular biologists search for the mechanisms than ensure precise and uninterrupted control of genome’s activity, biophysics keep on saying that this is a statistical process, i.e., a probabilistic one, therefore, it cannot be absolutely precise. Specialists of the Engelgardt Institute of Molecular Biology (Russian Academy of Sciences) and the Faculty of Physics, Moscow State University, jointly with the colleagues from the Gumboldt University (Germany) have received equations that allow to assess statistically the regulatory factors/DNA interaction.

According to biophysicists’ opinion, molecules inside the cell move around as freely as in a drop of experimental solution: their concentrations go up and down slightly. Even an insignificant local change in molecule concentration capable of interaction with DNA may impact such interaction. Therefore, if two cells possessing an identical set of genes obviously differ from each other, they owe that to statistical deviations. It is impossible to measure the changes in concentration in experimental systems, therefore the researchers create mathematical models. In fact, these models are sometimes far from real ones (no infinite DNAs or DNAs all set by proteins exist in nature), but they help to evaluate the contribution of fortuity in the sanctum sanctorum of a cell - in regulation of genes’ work. The contribution is significant. Sometimes, due to statistical difference of concentration at the DNA section there may turn out to be eight to twelve regulatory molecules instead of ten. Sometimes, the value of hindrances reaches 17 percent.


One more reason for hindrances lies in competition. Speaking about regulation of work of some gene, researchers normally imply specific interaction of definite molecules with specific sections of DNA. However, on top of specific interaction, there also exists non-specific interaction. Multiple molecules are capable of combining with DNA, and they do so simply because they happened to be nearby. Accidental connection is not that strong, but on the other hand, a lot of “alien” molecules can set on DNA, the alien molecules hindering genes from specific interaction with regulatory proteins. All theoretically possible cases of competition for physical contact with DNA also yield to mathematical formulation.

From biophysicists point of view, DNA with proteins adsorbed on it may be viewed as a message, where relevant information is carried not only by the number of bound proteins, but also by the degree of its deviation from an average value. The researchers are convinced that it is impossible to investigate the control of genes’ activity without involvement of statistical thermodynamics of systems with a small number of particles. Although the objects of statistical thermodynamics exist not in bioplast, but in a test-tube filled with the solution of a complicated composition, the difference is normally disregarded by the authors of mathematical models.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>