Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probability Controls The Molecule Of Life

24.05.2004


Thanks to biophysicists, statistics has reached the most intimate aspect of life – regulation of genes’ activity. Investigation on probabilistic aspects of molecular biology has been supported by the Russian Foundation for Basic Research and the INTAS Foundation.



Regulation of genes’ activity is one of the most important biological problems which has not been solved so far. A cell switches on and off its genes through multiple factors, which, if required, interact with certain sections of a chromosome or vice versa, leave them. While molecular biologists search for the mechanisms than ensure precise and uninterrupted control of genome’s activity, biophysics keep on saying that this is a statistical process, i.e., a probabilistic one, therefore, it cannot be absolutely precise. Specialists of the Engelgardt Institute of Molecular Biology (Russian Academy of Sciences) and the Faculty of Physics, Moscow State University, jointly with the colleagues from the Gumboldt University (Germany) have received equations that allow to assess statistically the regulatory factors/DNA interaction.

According to biophysicists’ opinion, molecules inside the cell move around as freely as in a drop of experimental solution: their concentrations go up and down slightly. Even an insignificant local change in molecule concentration capable of interaction with DNA may impact such interaction. Therefore, if two cells possessing an identical set of genes obviously differ from each other, they owe that to statistical deviations. It is impossible to measure the changes in concentration in experimental systems, therefore the researchers create mathematical models. In fact, these models are sometimes far from real ones (no infinite DNAs or DNAs all set by proteins exist in nature), but they help to evaluate the contribution of fortuity in the sanctum sanctorum of a cell - in regulation of genes’ work. The contribution is significant. Sometimes, due to statistical difference of concentration at the DNA section there may turn out to be eight to twelve regulatory molecules instead of ten. Sometimes, the value of hindrances reaches 17 percent.


One more reason for hindrances lies in competition. Speaking about regulation of work of some gene, researchers normally imply specific interaction of definite molecules with specific sections of DNA. However, on top of specific interaction, there also exists non-specific interaction. Multiple molecules are capable of combining with DNA, and they do so simply because they happened to be nearby. Accidental connection is not that strong, but on the other hand, a lot of “alien” molecules can set on DNA, the alien molecules hindering genes from specific interaction with regulatory proteins. All theoretically possible cases of competition for physical contact with DNA also yield to mathematical formulation.

From biophysicists point of view, DNA with proteins adsorbed on it may be viewed as a message, where relevant information is carried not only by the number of bound proteins, but also by the degree of its deviation from an average value. The researchers are convinced that it is impossible to investigate the control of genes’ activity without involvement of statistical thermodynamics of systems with a small number of particles. Although the objects of statistical thermodynamics exist not in bioplast, but in a test-tube filled with the solution of a complicated composition, the difference is normally disregarded by the authors of mathematical models.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>