Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in parasite movement may offer insights into malaria

24.05.2004


University of North Carolina at Chapel Hill scientists have discovered a protein in the cell wall of parasites that’s crucial to the molecular mechanism allowing them to move between cells, survive and cause disease.



The discovery was made in Toxoplasma gondii, an organism that can cause blindness and brain damage in people with an impaired immune system and can cause severe disease in first trimester fetuses. In addition, the organism is used as a model experimental system for studying the closely related mosquito-borne malaria parasite Plasmodium.

"The way these organisms move and the way their movement is controlled is absolutely critical to their ability to cause disease," said Dr. Con Beckers, associate professor of cell and developmental biology at UNC’s School of Medicine.


"Movement is necessary for these parasites to spread within the host animal, it is necessary for their ability to enter host cells, and movement is also necessary for parasites to escape from the host cell, to swim off and find a new cell."

A report of the research appeared in the May 10 issue of the Journal of Cell Biology. Co-authors are Beckers, Elizabeth Gaskins, Nicollete DeVore and Tara Mann, all of UNC; and Stacey Gilk and Gary Ward, of the University of Vermont.

The research will have relevance to malaria and a variety of related pathogens including Cryptosporidium, which causes disease in the elderly and in people with AIDS.

Protozoan parasites in the phylum that includes Toxoplasma and Plasmodium normally lack external structures such as hairlike cilia, pseudopodia and whiplike flagella for movement, the report said. Instead, their movement is through a unique process called gliding motility - a circular and forward twisting movement - that remains poorly defined, the scientists said.

In an attempt to understand the parasite’s movement machinery, the study team began by characterizing the protein composition of the organism’s cell wall. Among the many proteins they found was one that was novel, Beckers said.

"This particular protein, TgGAP50, was probably the major discovery here, an integral membrane protein, a protein embedded in the membrane of the parasite."

The researchers found that TgGAP50 associates with another major protein expressed by the parasite TgMyoA. Myosins are known to be involved in motility. For example, they are present in muscle, where, in combination with the protein actin, they form the thick filaments of muscle.

"This new protein is embedded in the inner membrane complex of the parasite, where it’s directly involved in anchoring myosin to the membrane," Beckers said. "This is, in fact, only the second example of a protein that directly does this."

Thus, the new protein is a specific membrane receptor for what the researchers say is a "myosin motor."

Toxoplasma motility may be a result of the myosin moving along the length of actin filaments in the parasite, Beckers said. Alternatively, it may be caused by the myosin holding onto the end of a growing actin filament. Either way, the myosin molecule needs to be anchored in the parasite for movement to occur.

"If the myosin is not anchored anywhere, its movement with respect to an actin filament will not result in parasite motility," Beckers said. "As an analogy, if you’re sitting in a small boat and throw a rope out to the dock and someone’s there to hold it, you can pull yourself toward that person. But if no one is there, all you’ll do is pull the rope and no net movement will occur."

Thus, apart from having identified a complex of proteins containing a major myosin in Toxoplasma, the new study has "gone one step further because we identified a protein that actually anchors this myosin-containing complex in the membrane. And this protein is absolutely critical to parasite motility," Beckers said.

"Since motility is so central to survival of this class of parasites, it’s incredibly important that we understand the basic elements of their motile apparatus and how the different components are controlled by the parasite," Beckers said.

"Toxoplasma is motile outside the host cell, not inside it. If we understood parasite motility, we may find a way through some interference with its control mechanisms to convince the organism that it’s actually inside the cell. And if we did that you’d have a non-motile parasite that would not survive to cause disease."


Funding for the research came from the National Institute of Allergy and Infectious Diseases and the Burroughs-Wellcome Fund.

Note: Contact Beckers at 919-966-1464 or cbeckers@med.unc.edu.
School of Medicine contact: Les Lang, 919-843-9687 or llang@med.unc.edu

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

nachricht Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended
28.06.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>