Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene linked to sperm-producing stem cells in mammals

24.05.2004


Researchers have identified the first gene linked to the productivity of the stem cells that produce sperm in mammals. The discovery was made by applying the latest laboratory methods to a strain of mice restored from embryos frozen since the early 70s. The findings, which could someday have implications for infertility, contraception, and stem cell transplantation therapy, will be published in the June issue of Nature Genetics.



What researchers are trying to do is unravel the mystery of the adult germ stem cells in male testicles, which are capable of producing an average of 1,500 sperm during every human heartbeat – or an average of 130 million sperm a day.

"The average man will maintain a high level of sperm production from puberty onward, for decade after decade. To maintain that high a sperm output, you need many functioning stem cells. But the stem cells have to walk a tightrope and carefully balance the decision to become a sperm with the decision to stay a stem cell, so that the sperm output is maintained for all of these years," said Dr. Robert Braun, associate professor of genome sciences in the University of Washington School of Medicine.


The research was funded in part by the National Institute of Child Health and Human Development’s Contraceptive Development Research Centers Program.

Stem cells are cells that are not differentiated – that is, they have not acquired a particular type (such as lung cells, or blood cells). Researchers call stem cells ’pluripotent’ cells, meaning that any given stem cell can become any of several types. In the early embryo, embryonic stem cells give rise to all of the cell types in the organism, including adult stem cells, which continually replace cells in the adult tissues that die or differentiate into more mature cells like red blood cells. In the adult testicles, the germ stem cells can produce more germ stem cells, but can also produce daughter cells that go on to become sperm. But researchers do not know how the germ stem cells "decide" whether to create other germ stem cells or commit to becoming sperm. The workings of stem cells within the testicles are not well understood in mammals, though a few genes have been linked to stem cell self-renewal in the fruit fly, which has a simpler anatomical structure.

Braun’s laboratory studies mammals. One of his predoctoral students, Bill Buaas, was reading journal articles from decades ago when he came across a description of a mutant line of mice that originated in the 1950s. These mice were studied at the time for their limb deformities, but there was a passing reference in the literature to how the mice were fertile for a little while, but then became infertile. Buaas and Braun agreed that it sounded as if the mice were born with germ stem cells, the cells that produce sperm, but then lost their germ line early in puberty. After a series of tests, the researchers concluded that because of the mutation, the cells were more likely to convert from germ stem cells into sperm, than to produce more germ stem cells to keep the process going.

This luxoid strain of mice was first identified by Margaret C. Green of the University of Ohio. Green, a well-known mouse geneticist who died several years ago, had several embryos from the 35th generation of the mice frozen at the Jackson Laboratory in Maine, the world’s largest mutant mouse resource center. The UW researchers contacted The Jackson Laboratory for the embryos, and staff there brought the strain back to life after the 30-year freeze.

Back in the 70s, researchers were able to position the luxoid mutation on mouse chromosome 9. Using modern methods and the published mouse genome sequence, UW researchers were able to identify the mutation at a gene called ZFP145, which produces the protein PLZF. Using a fluorescent antibody against the PLZF protein, the researchers were able to show directly that PLZF is expressed in the adult germ stem cells. The researchers went on to show that another protein, OCT4, which functions to maintain the stem cells in the early embryo and in cultured embryonic stem cells, is also present in the adult germ stem cell. This important finding confirms earlier published studies suggesting that the adult germ stem cells are not far removed from embryonic stem cells.

Identification of the mutation may have significant effects for both infertility and contraception research. In terms of infertility, researchers may someday find a link between the gene and a gradual loss of germ cells within the human testes, Braun said. It’s possible that the mutation may tip the infertile man’s stem cells toward differentiation: their stem cells produce sperm for a while, and then are depleted and become infertile – as happens in the luxoid mice. In theory, that and other discoveries might be used to fashion a therapy to rescue human germ cells and maintain sperm production.

In the same way, any practical implications for contraceptive research are many years away, Braun said: "Luxoid appears to be important in the cells’ decision whether to remain a stem cell, or differentiate. If we can understand all the players then maybe we could develop a drug that could block the decision to become sperm – a contraceptive that would be reversible." However, Braun stressed that such products are many, many years away and will require considerable research.

Researchers also hope to someday be able to reverse the developmental process and create embryonic stem cells from adult germ stem cells. Embryonic stem cells are "more pluripotent" than adult stem cells. The embryonic stem cells could then be used in transplantation therapy in patients with degenerative diseases of other tissues.

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>