Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene linked to sperm-producing stem cells in mammals

24.05.2004


Researchers have identified the first gene linked to the productivity of the stem cells that produce sperm in mammals. The discovery was made by applying the latest laboratory methods to a strain of mice restored from embryos frozen since the early 70s. The findings, which could someday have implications for infertility, contraception, and stem cell transplantation therapy, will be published in the June issue of Nature Genetics.



What researchers are trying to do is unravel the mystery of the adult germ stem cells in male testicles, which are capable of producing an average of 1,500 sperm during every human heartbeat – or an average of 130 million sperm a day.

"The average man will maintain a high level of sperm production from puberty onward, for decade after decade. To maintain that high a sperm output, you need many functioning stem cells. But the stem cells have to walk a tightrope and carefully balance the decision to become a sperm with the decision to stay a stem cell, so that the sperm output is maintained for all of these years," said Dr. Robert Braun, associate professor of genome sciences in the University of Washington School of Medicine.


The research was funded in part by the National Institute of Child Health and Human Development’s Contraceptive Development Research Centers Program.

Stem cells are cells that are not differentiated – that is, they have not acquired a particular type (such as lung cells, or blood cells). Researchers call stem cells ’pluripotent’ cells, meaning that any given stem cell can become any of several types. In the early embryo, embryonic stem cells give rise to all of the cell types in the organism, including adult stem cells, which continually replace cells in the adult tissues that die or differentiate into more mature cells like red blood cells. In the adult testicles, the germ stem cells can produce more germ stem cells, but can also produce daughter cells that go on to become sperm. But researchers do not know how the germ stem cells "decide" whether to create other germ stem cells or commit to becoming sperm. The workings of stem cells within the testicles are not well understood in mammals, though a few genes have been linked to stem cell self-renewal in the fruit fly, which has a simpler anatomical structure.

Braun’s laboratory studies mammals. One of his predoctoral students, Bill Buaas, was reading journal articles from decades ago when he came across a description of a mutant line of mice that originated in the 1950s. These mice were studied at the time for their limb deformities, but there was a passing reference in the literature to how the mice were fertile for a little while, but then became infertile. Buaas and Braun agreed that it sounded as if the mice were born with germ stem cells, the cells that produce sperm, but then lost their germ line early in puberty. After a series of tests, the researchers concluded that because of the mutation, the cells were more likely to convert from germ stem cells into sperm, than to produce more germ stem cells to keep the process going.

This luxoid strain of mice was first identified by Margaret C. Green of the University of Ohio. Green, a well-known mouse geneticist who died several years ago, had several embryos from the 35th generation of the mice frozen at the Jackson Laboratory in Maine, the world’s largest mutant mouse resource center. The UW researchers contacted The Jackson Laboratory for the embryos, and staff there brought the strain back to life after the 30-year freeze.

Back in the 70s, researchers were able to position the luxoid mutation on mouse chromosome 9. Using modern methods and the published mouse genome sequence, UW researchers were able to identify the mutation at a gene called ZFP145, which produces the protein PLZF. Using a fluorescent antibody against the PLZF protein, the researchers were able to show directly that PLZF is expressed in the adult germ stem cells. The researchers went on to show that another protein, OCT4, which functions to maintain the stem cells in the early embryo and in cultured embryonic stem cells, is also present in the adult germ stem cell. This important finding confirms earlier published studies suggesting that the adult germ stem cells are not far removed from embryonic stem cells.

Identification of the mutation may have significant effects for both infertility and contraception research. In terms of infertility, researchers may someday find a link between the gene and a gradual loss of germ cells within the human testes, Braun said. It’s possible that the mutation may tip the infertile man’s stem cells toward differentiation: their stem cells produce sperm for a while, and then are depleted and become infertile – as happens in the luxoid mice. In theory, that and other discoveries might be used to fashion a therapy to rescue human germ cells and maintain sperm production.

In the same way, any practical implications for contraceptive research are many years away, Braun said: "Luxoid appears to be important in the cells’ decision whether to remain a stem cell, or differentiate. If we can understand all the players then maybe we could develop a drug that could block the decision to become sperm – a contraceptive that would be reversible." However, Braun stressed that such products are many, many years away and will require considerable research.

Researchers also hope to someday be able to reverse the developmental process and create embryonic stem cells from adult germ stem cells. Embryonic stem cells are "more pluripotent" than adult stem cells. The embryonic stem cells could then be used in transplantation therapy in patients with degenerative diseases of other tissues.

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>