Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division can be halted in multiple ways, with implications for cancer

21.05.2004


Brown University researchers have found that there are multiple independent ways to stop cell division, a phenomenon that prevents the spread of genetic mutation, which can make cells cancerous. Results of this research, along with an accompanying editorial, were published in the current issue of the journal Molecular Cell.



The findings will be of interest to scientists who are developing new-generation drugs that target cancer at the molecular level, according to John Sedivy, principal investigator of the study and a professor in the Department of Molecular Biology, Cell Biology and Biochemistry.

“If you can trip a senescence pathway,” Sedivy said, “you’d have a pretty terrific drug.”


Cells – except for cancerous ones – cannot reproduce forever. When aging cells stop dividing, they become “senescent.” Scientists believe one factor that causes senescence is the length of a cell’s telomeres, or protective caps on the end of chromosomes. Every time chromosomes reproduce, telomeres get shorter. As telomeres dwindle, cell division stops altogether. Senescent cells do not function the way young cells do, and are believed to be associated with skin wrinkles, immune system problems and age-related diseases, including cancer.

A protein called p21 acts as the molecular switch that triggers telomere-initiated senescence. A substantial part of the work reported by Sedivy and his team focuses on details of the pathways that trip the p21 switch, which were found to be similar, but not identical, to cellular responses to DNA damage. It is well known that if DNA is damaged, cells recognize the defect and stop dividing – a critical safeguard against cancer. The finding that dysfunctional telomeres can trigger similar responses is an important insight.

But Sedivy and his team also discovered another molecular mechanism that triggers senescence.

By manipulating single human cells in their laboratory, the researchers discovered that a protein called p16 also prompts cells to shut down and stop dividing. The team found that p16 operates independently from telomeres.

Sedivy said that p16, p21 and the upstream components that regulate senescence switches would all make compelling subjects of study for pharmaceutical companies, biotech firms and other university researchers.

“When it comes to developing drugs, this information is gold,” he said. “Because it should be possible to develop therapeutics to manipulate these targets.”

From start to finish, the research took two years to complete. Scientists at the Lawrence Berkeley National Laboratory in Berkeley, California provided technical assistance. The National Institutes of Health funded the project.

Wendy Lawton | Brown University
Further information:
http://www.brown.edu/Administration/News_Bureau/2003-04/03-141.html

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>