Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division can be halted in multiple ways, with implications for cancer

21.05.2004


Brown University researchers have found that there are multiple independent ways to stop cell division, a phenomenon that prevents the spread of genetic mutation, which can make cells cancerous. Results of this research, along with an accompanying editorial, were published in the current issue of the journal Molecular Cell.



The findings will be of interest to scientists who are developing new-generation drugs that target cancer at the molecular level, according to John Sedivy, principal investigator of the study and a professor in the Department of Molecular Biology, Cell Biology and Biochemistry.

“If you can trip a senescence pathway,” Sedivy said, “you’d have a pretty terrific drug.”


Cells – except for cancerous ones – cannot reproduce forever. When aging cells stop dividing, they become “senescent.” Scientists believe one factor that causes senescence is the length of a cell’s telomeres, or protective caps on the end of chromosomes. Every time chromosomes reproduce, telomeres get shorter. As telomeres dwindle, cell division stops altogether. Senescent cells do not function the way young cells do, and are believed to be associated with skin wrinkles, immune system problems and age-related diseases, including cancer.

A protein called p21 acts as the molecular switch that triggers telomere-initiated senescence. A substantial part of the work reported by Sedivy and his team focuses on details of the pathways that trip the p21 switch, which were found to be similar, but not identical, to cellular responses to DNA damage. It is well known that if DNA is damaged, cells recognize the defect and stop dividing – a critical safeguard against cancer. The finding that dysfunctional telomeres can trigger similar responses is an important insight.

But Sedivy and his team also discovered another molecular mechanism that triggers senescence.

By manipulating single human cells in their laboratory, the researchers discovered that a protein called p16 also prompts cells to shut down and stop dividing. The team found that p16 operates independently from telomeres.

Sedivy said that p16, p21 and the upstream components that regulate senescence switches would all make compelling subjects of study for pharmaceutical companies, biotech firms and other university researchers.

“When it comes to developing drugs, this information is gold,” he said. “Because it should be possible to develop therapeutics to manipulate these targets.”

From start to finish, the research took two years to complete. Scientists at the Lawrence Berkeley National Laboratory in Berkeley, California provided technical assistance. The National Institutes of Health funded the project.

Wendy Lawton | Brown University
Further information:
http://www.brown.edu/Administration/News_Bureau/2003-04/03-141.html

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>